JPEG (जॉइंट फोटोग्राफिक एक्सपर्ट्स ग्रुप) इमेज फॉर्मेट, जिसे आमतौर पर JPG के रूप में जाना जाता है, डिजिटल इमेज के लिए लॉसी कम्प्रेशन की एक व्यापक रूप से उपयोग की जाने वाली विधि है, विशेष रूप से डिजिटल फोटोग्राफी द्वारा निर्मित उन इमेज के लिए। कम्प्रेशन की डिग्री को समायोजित किया जा सकता है, जिससे स्टोरेज साइज़ और इमेज क्वालिटी के बीच एक चयन योग्य ट्रेड-ऑफ की अनुमति मिलती है। JPEG आमतौर पर इमेज क्वालिटी में थोड़े से बोधगम्य नुकसान के साथ 10:1 कम्प्रेशन प्राप्त करता है।
JPEG कम्प्रेशन का उपयोग कई इमेज फ़ाइल फॉर्मेट में किया जाता है। JPEG/Exif डिजिटल कैमरों और अन्य फोटोग्राफिक इमेज कैप्चर डिवाइस द्वारा उपयोग किया जाने वाला सबसे आम इमेज फॉर्मेट है; JPEG/JFIF के साथ, यह वर्ल्ड वाइड वेब पर फोटोग्राफिक इमेज को स्टोर करने और ट्रांसमिट करने के लिए सबसे आम फॉर्मेट है। इन फॉर्मेट भिन्नताओं को अक्सर अलग नहीं किया जाता है, और इन्हें केवल JPEG कहा जाता है।
JPEG फॉर्मेट में कई मानक शामिल हैं, जिनमें JPEG/Exif, JPEG/JFIF और JPEG 2000 शामिल हैं, जो एक नया मानक है जो उच्च कम्प्यूटेशनल जटिलता के साथ बेहतर कम्प्रेशन दक्षता प्रदान करता है। JPEG मानक जटिल है, जिसमें विभिन्न भाग और प्रोफाइल हैं, लेकिन सबसे अधिक उपयोग किया जाने वाला JPEG मानक बेसलाइन JPEG है, जिसका उल्लेख अधिकांश लोग 'JPEG' इमेज का उल्लेख करते समय करते हैं।
JPEG कम्प्रेशन एल्गोरिथम अपने मूल में एक असतत कोसाइन ट्रांसफॉर्म (DCT) आधारित कम्प्रेशन तकनीक है। DCT एक फूरियर-संबंधित ट्रांसफॉर्म है जो असतत फूरियर ट्रांसफॉर्म (DFT) के समान है, लेकिन केवल कोसाइन फ़ंक्शन का उपयोग करता है। DCT का उपयोग इसलिए किया ज ाता है क्योंकि इसमें स्पेक्ट्रम के निचले आवृत्ति क्षेत्र में अधिकांश सिग्नल को केंद्रित करने का गुण होता है, जो प्राकृतिक इमेज के गुणों के साथ अच्छी तरह से संबंधित होता है।
JPEG कम्प्रेशन प्रक्रिया में कई चरण शामिल हैं। प्रारंभ में, इमेज को उसके मूल रंग स्थान (आमतौर पर RGB) से एक अलग रंग स्थान में परिवर्तित किया जाता है जिसे YCbCr के रूप में जाना जाता है। YCbCr रंग स्थान इमेज को एक ल्यूमिनेंस घटक (Y) में अलग करता है, जो चमक के स्तर का प्रतिनिधित्व करता है, और दो क्रोमिनेंस घटक (Cb और Cr), जो रंग की जानकारी का प्रतिनिधित्व करते हैं। यह पृथक्करण फायदेमंद है क्योंकि मानवीय आँख रंग की तुलना में चमक में भिन्नताओं के प्रति अधिक संवेदनशील होती है, जिससे क्रोमिनेंस घटकों के अधिक आक्रामक कम्प्रेशन की अनुमति मिलती है, जो कथित इमेज क्वालिटी को महत्वपूर्ण रूप से प्रभावित किए बिना होती है।
रंग स्थान रूपा ंतरण के बाद, इमेज को ब्लॉक में विभाजित किया जाता है, आमतौर पर आकार में 8x8 पिक्सेल। फिर प्रत्येक ब्लॉक को अलग से संसाधित किया जाता है। प्रत्येक ब्लॉक के लिए, DCT लागू किया जाता है, जो स्थानिक डोमेन डेटा को आवृत्ति डोमेन डेटा में बदल देता है। यह चरण महत्वपूर्ण है क्योंकि यह इमेज डेटा को कम्प्रेशन के लिए अधिक उपयुक्त बनाता है, क्योंकि प्राकृतिक इमेज में कम-आवृत्ति वाले घटक होते हैं जो उच्च-आवृत्ति वाले घटकों की तुलना में अधिक महत्वपूर्ण होते हैं।
DCT लागू होने के बाद, परिणामी गुणांक क्वांटिज़्ड होते हैं। क्वांटिज़ेशन इनपुट मानों के एक बड़े सेट को एक छोटे सेट में मैप करने की प्रक्रिया है, जो उन्हें स्टोर करने के लिए आवश्यक बिट्स की संख्या को प्रभावी ढंग से कम करता है। यह JPEG कम्प्रेशन में नुकसान का प्राथमिक स्रोत है। क्वांटिज़ेशन चरण को एक क्वांटिज़ेशन टेबल द्वारा नियंत्रित किया जाता है, जो यह निर्धारित करता है कि प्रत्येक DCT गुणांक पर कितना कम्प्रेशन लागू किया जाता है। क्वांटिज़ेशन टेबल को समायोजित करके, उपयोगकर्ता इमेज क्वालिटी और फ़ाइल साइज़ के बीच ट्रेड-ऑफ कर सकते हैं।
क्वांटिज़ेशन के बाद, गुणांकों को ज़िगज़ैग स्कैनिंग द्वारा रैखिक बनाया जाता है, जो उन्हें बढ़ती आवृत्ति के अनुसार क्रमबद्ध करता है। यह चरण महत्वपूर्ण है क्योंकि यह कम-आवृत्ति वाले गुणांकों को एक साथ समूहित करता है जो महत्वपूर्ण होने की अधिक संभावना रखते हैं, और उच्च-आवृत्ति वाले गुणांक जो क्वांटिज़ेशन के बाद शून्य या शून्य के निकट होने की अधिक संभावना रखते हैं। यह क्रम अगले चरण को सुगम बनाता है, जो एन्ट्रॉपी कोडिंग है।
एन्ट्रॉपी कोडिंग लॉसलेस कम्प्रेशन की एक विधि है जिसे क्वांटिज़्ड DCT गुणांकों पर लागू किया जाता है। JPEG में उपयोग की जाने वाली एन्ट्रॉपी कोडिंग का सबसे सामान्य रूप हफ़म ैन कोडिंग है, हालाँकि अंकगणितीय कोडिंग को भी मानक द्वारा समर्थित किया जाता है। हफ़मैन कोडिंग अधिक बार-बार आने वाले तत्वों को छोटे कोड और कम बार-बार आने वाले तत्वों को लंबे कोड असाइन करके काम करता है। चूंकि प्राकृतिक इमेज में क्वांटिज़ेशन के बाद कई शून्य या शून्य के निकट गुणांक होते हैं, विशेष रूप से उच्च-आवृत्ति वाले क्षेत्र में, हफ़मैन कोडिंग संपीड़ित डेटा के आकार को काफी कम कर सकता है।
JPEG कम्प्रेशन प्रक्रिया में अंतिम चरण संपीड़ित डेटा को एक फ़ाइल फॉर्मेट में स्टोर करना है। सबसे आम फॉर्मेट JPEG फ़ाइल इंटरचेंज फॉर्मेट (JFIF) है, जो परिभाषित करता है कि संपीड़ित डेटा और संबद्ध मेटाडेटा का प्रतिनिधित्व कैसे किया जाए, जैसे कि क्वांटिज़ेशन टेबल और हफ़मैन कोड टेबल, एक फ़ाइल में जिसे सॉफ़्टवेयर की एक विस्तृत श्रृंखला द्वारा डिकोड किया जा सकता है। एक अन्य सामान्य फॉर्मेट एक्सचेंजेबल इमेज फ़ाइल फॉर्मेट (Exif) है, जिसका उपयोग डिजिटल कैमरों द्वारा किया जाता है और इसमें कैमरा सेटिंग्स और दृश्य जानकारी जैसे मेटाडेटा शामिल होते हैं।
JPEG फ़ाइलों में मार्कर भी शामिल होते हैं, जो कोड अनुक्रम होते हैं जो फ़ाइल में कुछ मापदंडों या क्रियाओं को परिभाषित करते हैं। ये मार्कर एक इमेज की शुरुआत, एक इमेज के अंत, क्वांटिज़ेशन टेबल को परिभाषित करते हैं, हफ़मैन कोड टेबल को निर्दिष्ट करते हैं, और बहुत कुछ इंगित कर सकते हैं। JPEG इमेज के उचित डिकोडिंग के लिए मार्कर आवश्यक हैं, क्योंकि वे संपीड़ित डेटा से इमेज को फिर से बनाने के लिए आवश्यक जानकारी प्रदान करते हैं।
JPEG की प्रमुख विशेषताओं में से एक प्रगतिशील एन्कोडिंग के लिए इसका समर्थन है। प्रगतिशील JPEG में, इमेज को कई पास में एन्कोड किया जाता है, प्रत्येक इमेज क्वालिटी में सुधार करता है। यह इमेज के निम्न-गुणवत्ता वाले संस्करण को प्रदर्शित करने की अनुमति देता है जबकि फ़ाइल अभी भी डाउनलोड की जा रही है, जो विशेष रूप से वेब इमेज के लिए उपयोगी हो सकता है। प्रगतिशील JPEG फ़ाइलें आमतौर पर बेसलाइन JPEG फ़ाइलों से बड़ी होती हैं, लेकिन लोडिंग के दौरान क्व
JPEG, जो कि संयुक्त फोटोग्राफिक विशेषज्ञ समूह के लिए है, डिजिटल छवियों के लिए हानिपूर्ण संपीड़न की एक सामान्यतः उपयोग की जाने वाली विधि है, विशेष रूप से डिजिटल फोटोग्राफी द्वारा निर्मित उन छवियों के लिए। संपीड़न की डिग्री को समायोजित किया जा सकता है, जिससे संग्रहण आकार और छवि गुणवत्ता के बीच एक चयन योग्य व्यापार की अनुमति मिलती है। JPEG आमतौर पर छवि गुणवत्ता में थोड़े बोधगम्य नुकसान के साथ 10:1 संपीड़न प्राप्त करता है।
JPEG संपीड़न एल्गोरिथ्म JPEG मानक के मूल में है। प् रक्रिया एक डिजिटल छवि से शुरू होती है जिसे उसके विशिष्ट RGB रंग स्थान से YCbCr नामक एक अलग रंग स्थान में परिवर्तित किया जाता है। YCbCr रंग स्थान छवि को चमक (Y) में अलग करता है, जो चमक के स्तर का प्रतिनिधित्व करता है, और क्रोमिनेंस (Cb और Cr), जो रंग की जानकारी का प्रतिनिधित्व करता है। यह पृथक्करण फायदेमंद है क्योंकि मानवीय आँख रंग की तुलना में चमक में बदलाव के प्रति अधिक संवेदनशील होती है, जिससे संपीड़न को चमक से अधिक रंग की जानकारी को संपीड़ित करके इसका लाभ उठाने की अनुमति मिलती है।
एक बार छवि YCbCr रंग स्थान में हो जाती है, तो JPEG संपीड़न प्रक्रिया में अगला कदम क्रोमिनेंस चैनलों को डाउनसैंपल करना है। डाउनसैंपलिंग क्रोमिनेंस जानकारी के रिज़ॉल्यूशन को कम करता है, जो आमतौर पर छवि की कथित गुणवत्ता को महत्वपूर्ण रूप से प्रभावित नहीं करता है, क्योंकि मानवीय आँख रंग विवरण के प्रति कम संवेदनशील होती है । यह चरण वैकल्पिक है और छवि गुणवत्ता और फ़ाइल आकार के बीच वांछित संतुलन के आधार पर इसे समायोजित किया जा सकता है।
डाउनसैंपलिंग के बाद, छवि को ब्लॉकों में विभाजित किया जाता है, आमतौर पर आकार में 8x8 पिक्सेल। फिर प्रत्येक ब्लॉक को अलग से संसाधित किया जाता है। प्रत्येक ब्लॉक को संसाधित करने में पहला कदम असतत कोसाइन ट्रांसफॉर्म (DCT) को लागू करना है। DCT एक गणितीय संक्रिया है जो स्थानिक डोमेन डेटा (पिक्सेल मान) को आवृत्ति डोमेन में बदल देती है। परिणाम आवृत्ति गुणांकों का एक मैट्रिक्स है जो छवि ब्लॉक के डेटा को उसके स्थानिक आवृत्ति घटकों के संदर्भ में दर्शाता है।
DCT से प्राप्त आवृत्ति गुणांकों को फिर क्वांटिज़ किया जाता है। क्वांटिज़ेशन इनपुट मानों के एक बड़े सेट को एक छोटे सेट में मैप करने की प्रक्रिया है - JPEG के मामले में, इसका मतलब आवृत्ति गुणांकों की परिशुद्धता को कम करना है। यहीं पर संपीड़न का हानिपूर्ण भाग होता है, क्योंकि कुछ छवि जानकारी को त्याग दिया जाता है। क्वांटिज़ेशन चरण को एक क्वांटिज़ेशन टेबल द्वारा नियंत्रित किया जाता है, जो यह निर्धारित करता है कि प्रत्येक आवृत्ति घटक पर कितना संपीड़न लागू किया जाता है। क्वांटिज़ेशन टेबल को उच्च छवि गुणवत्ता (कम संपीड़न) या छोटे फ़ाइल आकार (अधिक संपीड़न) के पक्ष में समायोजित किया जा सकता है।
क्वांटिज़ेशन के बाद, गुणांकों को एक ज़िगज़ैग क्रम में व्यवस्थित किया जाता है, जो ऊपरी-बाएँ कोने से शुरू होता है और एक पैटर्न का अनुसरण करता है जो उच्च आवृत्ति वाले लोगों पर कम आवृत्ति वाले घटकों को प्राथमिकता देता है। ऐसा इसलिए है क्योंकि कम आवृत्ति वाले घटक (जो छवि के अधिक समान भागों का प्रतिनिधित्व करते हैं) उच्च आवृत्ति वाले घटकों (जो महीन विवरण और किनारों का प्रतिनिधित्व करते हैं) की तुलना में समग्र रूप से अधिक महत् वपूर्ण होते हैं।
JPEG संपीड़न प्रक्रिया में अगला कदम एन्ट्रॉपी कोडिंग है, जो दोषरहित संपीड़न की एक विधि है। JPEG में उपयोग की जाने वाली एन्ट्रॉपी कोडिंग का सबसे सामान्य रूप हफ़मैन कोडिंग है, हालांकि अंकगणितीय कोडिंग भी एक विकल्प है। हफ़मैन कोडिंग अधिक बार होने वाली घटनाओं को छोटे कोड और कम बार होने वाली घटनाओं को लंबे कोड असाइन करके काम करता है। चूंकि ज़िगज़ैग ऑर्डरिंग समान आवृत्ति गुणांकों को एक साथ समूहित करता है, इसलिए यह हफ़मैन कोडिंग की दक्षता को बढ़ाता है।
एक बार एन्ट्रॉपी कोडिंग पूरी हो जाने के बाद, संपीड़ित डेटा को एक फ़ाइल प्रारूप में संग्रहीत किया जाता है जो JPEG मानक के अनुरूप होता है। इस फ़ाइल प्रारूप में एक हेडर शामिल होता है जिसमें छवि के बारे में जानकारी होती है, जैसे कि इसके आयाम और उपयोग की जाने वाली क्वांटिज़ेशन टेबल, इसके बाद हफ़मैन-कोडित छवि डेटा। फ़ाइल प्रार ूप EXIF डेटा जैसे मेटाडेटा को शामिल करने का भी समर्थन करता है, जिसमें तस्वीर लेने के लिए उपयोग की गई कैमरा सेटिंग्स, इसे लिए गए दिनांक और समय और अन्य प्रासंगिक विवरणों के बारे में जानकारी हो सकती है।
जब एक JPEG छवि खोली जाती है, तो डीकंप्रेसन प्रक्रिया अनिवार्य रूप से संपीड़न चरणों को उलट देती है। हफ़मैन-कोडित डेटा को डिकोड किया जाता है, क्वांटिज़्ड आवृत्ति गुणांकों को उन्हीं क्वांटिज़ेशन टेबल का उपयोग करके डी-क्वांटिज़ किया जाता है जो संपीड़न के दौरान उपयोग किए गए थे, और व्युत्क्रम असतत कोसाइन ट्रांसफॉर्म (IDCT) को आवृत्ति डोमेन डेटा को वापस स्थानिक डोमेन पिक्सेल मानों में बदलने के लिए प्रत्येक ब्लॉक पर लागू किया जाता है।
डी-क्वांटिज़ेशन और IDCT प्रक्रियाएं संपीड़न की हानिपूर्ण प्रकृति के कारण कुछ त्रुटियों का परिचय देती हैं, यही वजह है कि JPEG उन छवियों के लिए आदर्श नहीं है जो कई संपादनों और पुनः-सहेजने से गुजरेंगी। हर बार जब एक JPEG छवि को सहेजा जाता है, तो यह फिर से संपीड़न प्रक्रिया से गुजरती है, और अतिरिक्त छवि जानकारी खो जाती है। इससे समय के साथ छवि गुणवत्ता में ध्यान देने योग्य गिरावट आ सकती है, एक घटना जिसे 'जनरेशन लॉस' के रूप में जाना जाता है।
JPEG संपीड़न की हानिपूर्ण प्रकृति के बावजूद, यह अपने लचीलेपन और दक्षता के कारण एक लोकप्रिय छवि प्रारूप बना हुआ है। JPEG छवियां फ़ाइल आकार में बहुत छोटी हो सकती हैं, जो उन्हें वेब पर उपयोग के लिए आदर्श बनाती हैं, जहां बैंडविड्थ और लोडिंग समय महत्वपूर्ण विचार हैं। इसके अतिरिक्त, JPEG मानक में एक प्रगतिशील मोड शामिल है, जो एक छवि को इस तरह से एन्कोड करने की अनुमति देता है कि इसे कई पास में डिकोड किया जा सकता है, प्रत्येक पास छवि के रिज़ॉल्यूशन में सुधार करता है। यह विशेष रूप से वेब छवियों के लिए उपयोगी है, क्योंकि यह छवि के निम्न-गुणवत्ता वाले संस्करण को जल्दी से प्रदर्शित करने की अनुमति देता है, गुणवत्ता में सुधार के साथ जैसे-जैसे अधिक डेटा डाउनलोड किया जाता है।
JPEG की कुछ सीमाएँ भी हैं और यह हमेशा सभी प्रकार की छवियों के लिए सबसे अच्छा विकल्प नहीं होता है। उदाहरण के लिए, यह तेज किनारों या उच्च कंट्रास्ट टेक्स्ट वाली छवियों के लिए उपयुक्त नहीं है, क्योंकि संपीड़न इन क्षेत्रों के आसपास ध्यान देने योग्य कलाकृतियां बना सकता है। इसके अतिरिक्त, JPEG पारदर्श
यह कन्वर्टर पूरी तरह से आपके ब्राउज़र में चलता है। जब आप एक फ़ाइल का चयन करते हैं, तो यह स्मृति में पढ़ा जाता है और चयनित प्रारूप में रूपांतरित किया जाता है। आप फिर रूपांतरित फ़ाइल डाउनलोड कर सकते हैं।
रूपांतरण तत्काल प्रारंभ होते हैं, और अधिकांश फ़ाइलें एक सेकंड के भीतर रूपांतरित की जाती हैं। बड़ी फ़ाइलें अधिक समय ले सकती हैं।
आपकी फ़ाइलें कभी हमारे सर्वर पर अपलोड नहीं की जाती हैं। वे आपके ब्राउज़र में रूपांतरित होती हैं, और फिर रूपांतरित फ़ाइल डाउनलोड की जाती है। हमें आपकी फ़ाइलें कभी नहीं दिखाई देती हैं।
हम सभी छवि प्रारूपों के बीच रूपांतरण का समर्थन करते हैं, जिसमें JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, और अधिक शाम िल हैं।
यह कन्वर्टर पूरी तरह से मुफ्त है, और हमेशा मुफ्त रहेगा। क्योंकि यह आपके ब्राउज़र में चलता है, हमें सर्वर के लिए भुगतान करने की आवश्यकता नहीं होती, इसलिए हमें आपसे शुल्क नहीं लगाना पड़ता।
हाँ! आप एक साथ जितनी चाहें उत्तम फ़ाइलें रूपांतरित कर सकते हैं। बस जब आप उन्हें जोड़ते हैं तो कई फ़ाइलें चुनें।