JPEG (जॉइंट फोटोग्राफिक एक्सपर्ट्स ग्रुप) इमेज फॉर्मेट, जिसे आमतौर पर JPG के रूप में जाना जाता है, डिजिटल इमेज के लिए लॉसी कम्प्रेशन की एक व्यापक रूप से उपयोग की जाने वाली विधि है, विशेष रूप से डिजिटल फोटोग्राफी द्वारा निर्मित उन इमेज के लिए। कम्प्रेशन की डिग्री को समायोजित किया जा सकता है, जिससे स्टोरेज साइज़ और इमेज क्वालिटी के बीच एक चयन योग्य ट्रेड-ऑफ की अनुमति मिलती है। JPEG आमतौर पर इमेज क्वालिटी में थोड़े से बोधगम्य नुकसान के साथ 10:1 कम्प्रेशन प्राप्त करता है।
JPEG कम्प्रेशन का उपयोग कई इमेज फ़ाइल फॉर्मेट में किया जाता है। JPEG/Exif डिजिटल कैमरों और अ न्य फोटोग्राफिक इमेज कैप्चर डिवाइस द्वारा उपयोग किया जाने वाला सबसे आम इमेज फॉर्मेट है; JPEG/JFIF के साथ, यह वर्ल्ड वाइड वेब पर फोटोग्राफिक इमेज को स्टोर करने और ट्रांसमिट करने के लिए सबसे आम फॉर्मेट है। इन फॉर्मेट भिन्नताओं को अक्सर अलग नहीं किया जाता है, और इन्हें केवल JPEG कहा जाता है।
JPEG फॉर्मेट में कई मानक शामिल हैं, जिनमें JPEG/Exif, JPEG/JFIF और JPEG 2000 शामिल हैं, जो एक नया मानक है जो उच्च कम्प्यूटेशनल जटिलता के साथ बेहतर कम्प्रेशन दक्षता प्रदान करता है। JPEG मानक जटिल है, जिसमें विभिन्न भाग और प्रोफाइल हैं, लेकिन सबसे अधिक उपयोग किया जाने वाला JPEG मानक बेसलाइन JPEG है, जिसका उल्लेख अधिकांश लोग 'JPEG' इमेज का उल्लेख करते समय करते हैं।
JPEG कम्प्रेशन एल्गोरिथम अपने मूल में एक असतत कोसाइन ट्रांसफॉर्म (DCT) आधारित कम्प्रेशन तकनीक है। DCT एक फूरियर-संबंधित ट्रांसफॉर्म है जो असतत फूरियर ट्रांसफॉर्म (DFT) के समान है, लेकिन केवल कोसाइन फ़ंक्शन का उपयोग करता है। DCT का उपयोग इसलिए किया जाता है क्योंकि इसमें स्पेक्ट्रम के निचले आवृत्ति क्षेत्र में अधिकांश सिग्नल को केंद्रित करने का गुण होता है, जो प्राकृतिक इमेज के गुणों के साथ अच्छी तरह से संबंधित होता है।
JPEG कम्प्रेशन प्रक्रिया में कई चरण शामिल हैं। प्रारंभ में, इमेज को उसके मूल रंग स्थान (आमतौर पर RGB) से एक अलग रंग स्थान में परिवर्तित किया जाता है जिसे YCbCr के रूप में जाना जाता है। YCbCr रंग स्थान इमेज को एक ल्यूमिनेंस घटक (Y) में अलग करता है, जो चमक के स्तर का प्रतिनिधित्व करता है, और दो क्रोमिनेंस घटक (Cb और Cr), जो रंग की जानकारी का प्रतिनिधित्व करते हैं। यह पृथक्करण फायदेमंद है क्योंकि मानवीय आँख रंग की तुलना में चमक में भिन्नताओं के प्रति अधिक संवेदनशील होती है, जिससे क्रोमिनेंस घटकों के अधिक आक्रामक कम्प्रेशन की अनुमति मिलती है, जो कथित इमेज क्वाल िटी को महत्वपूर्ण रूप से प्रभावित किए बिना होती है।
रंग स्थान रूपांतरण के बाद, इमेज को ब्लॉक में विभाजित किया जाता है, आमतौर पर आकार में 8x8 पिक्सेल। फिर प्रत्येक ब्लॉक को अलग से संसाधित किया जाता है। प्रत्येक ब्लॉक के लिए, DCT लागू किया जाता है, जो स्थानिक डोमेन डेटा को आवृत्ति डोमेन डेटा में बदल देता है। यह चरण महत्वपूर्ण है क्योंकि यह इमेज डेटा को कम्प्रेशन के लिए अधिक उपयुक्त बनाता है, क्योंकि प्राकृतिक इमेज में कम-आवृत्ति वाले घटक होते हैं जो उच्च-आवृत्ति वाले घटकों की तुलना में अधिक महत्वपूर्ण होते हैं।
DCT लागू होने के बाद, परिणामी गुणांक क्वांटिज़्ड होते हैं। क्वांटिज़ेशन इनपुट मानों के एक बड़े सेट को एक छोटे सेट में मैप करने की प्रक्रिया है, जो उन्हें स्टोर करने के लिए आवश्यक बिट्स की संख्या को प्रभावी ढंग से कम करता है। यह JPEG कम्प्रेशन में नुकसान का प्राथमिक स्रोत है। क ्वांटिज़ेशन चरण को एक क्वांटिज़ेशन टेबल द्वारा नियंत्रित किया जाता है, जो यह निर्धारित करता है कि प्रत्येक DCT गुणांक पर कितना कम्प्रेशन लागू किया जाता है। क्वांटिज़ेशन टेबल को समायोजित करके, उपयोगकर्ता इमेज क्वालिटी और फ़ाइल साइज़ के बीच ट्रेड-ऑफ कर सकते हैं।
क्वांटिज़ेशन के बाद, गुणांकों को ज़िगज़ैग स्कैनिंग द्वारा रैखिक बनाया जाता है, जो उन्हें बढ़ती आवृत्ति के अनुसार क्रमबद्ध करता है। यह चरण महत्वपूर्ण है क्योंकि यह कम-आवृत्ति वाले गुणांकों को एक साथ समूहित करता है जो महत्वपूर्ण होने की अधिक संभावना रखते हैं, और उच्च-आवृत्ति वाले गुणांक जो क्वांटिज़ेशन के बाद शून्य या शून्य के निकट होने की अधिक संभावना रखते हैं। यह क्रम अगले चरण को सुगम बनाता है, जो एन्ट्रॉपी कोडिंग है।
एन्ट्रॉपी कोडिंग लॉसलेस कम्प्रेशन की एक विधि है जिसे क्वांटिज़्ड DCT गुणांकों पर लागू किया जाता ह ै। JPEG में उपयोग की जाने वाली एन्ट्रॉपी कोडिंग का सबसे सामान्य रूप हफ़मैन कोडिंग है, हालाँकि अंकगणितीय कोडिंग को भी मानक द्वारा समर्थित किया जाता है। हफ़मैन कोडिंग अधिक बार-बार आने वाले तत्वों को छोटे कोड और कम बार-बार आने वाले तत्वों को लंबे कोड असाइन करके काम करता है। चूंकि प्राकृतिक इमेज में क्वांटिज़ेशन के बाद कई शून्य या शून्य के निकट गुणांक होते हैं, विशेष रूप से उच्च-आवृत्ति वाले क्षेत्र में, हफ़मैन कोडिंग संपीड़ित डेटा के आकार को काफी कम कर सकता है।
JPEG कम्प्रेशन प्रक्रिया में अंतिम चरण संपीड़ित डेटा को एक फ़ाइल फॉर्मेट में स्टोर करना है। सबसे आम फॉर्मेट JPEG फ़ाइल इंटरचेंज फॉर्मेट (JFIF) है, जो परिभाषित करता है कि संपीड़ित डेटा और संबद्ध मेटाडेटा का प्रतिनिधित्व कैसे किया जाए, जैसे कि क्वांटिज़ेशन टेबल और हफ़मैन कोड टेबल, एक फ़ाइल में जिसे सॉफ़्टवेयर की एक विस्तृत श्रृंखला द्वारा डिकोड किया जा सकता है। एक अन्य सामान्य फॉर्मेट एक्सचेंजेबल इमेज फ़ाइल फॉर्मेट (Exif) है, जिसका उपयोग डिजिटल कैमरों द्वारा किया जाता है और इसमें कैमरा सेटिंग्स और दृश्य जानकारी जैसे मेटाडेटा शामिल होते हैं।
JPEG फ़ाइलों में मार्कर भी शामिल होते हैं, जो कोड अनुक्रम होते हैं जो फ़ाइल में कुछ मापदंडों या क्रियाओं को परिभाषित करते हैं। ये मार्कर एक इमेज की शुरुआत, एक इमेज के अंत, क्वांटिज़ेशन टेबल को परिभाषित करते हैं, हफ़मैन कोड टेबल को निर्दिष्ट करते हैं, और बहुत कुछ इंगित कर सकते हैं। JPEG इमेज के उचित डिकोडिंग के लिए मार्कर आवश्यक हैं, क्योंकि वे संपीड़ित डेटा से इमेज को फिर से बनाने के लिए आवश्यक जानकारी प्रदान करते हैं।
JPEG की प्रमुख विशेषताओं में से एक प्रगतिशील एन्कोडिंग के लिए इसका समर्थन है। प्रगतिशील JPEG में, इमेज को कई पास में एन्कोड किया जाता है, प्रत्येक इमेज क्वालिटी में स ुधार करता है। यह इमेज के निम्न-गुणवत्ता वाले संस्करण को प्रदर्शित करने की अनुमति देता है जबकि फ़ाइल अभी भी डाउनलोड की जा रही है, जो विशेष रूप से वेब इमेज के लिए उपयोगी हो सकता है। प्रगतिशील JPEG फ़ाइलें आमतौर पर बेसलाइन JPEG फ़ाइलों से बड़ी होती हैं, लेकिन लोडिंग के दौरान क्व
G4 इमेज फॉर्मेट, जिसे ग्रुप 4 कम्प्रेशन के नाम से भी जाना जाता है, एक डिजिटल इमेज कम्प्रेशन स्कीम है जिसका उपयोग आमतौर पर फैक्स ट्रांसमिशन और स्कैनिंग में किया जाता है। यह TIFF (टैग्ड इमेज फाइल फॉर्मेट) परिवार का एक हिस्सा है और इसे विशेष रूप से कुशल ब्लैक-एंड-व्हाइट या मोनोक्रोम इमेज डेटा कम्प्रेशन के लिए डिज़ाइन किया गया है। G4 इमेज फॉर्मेट का प्राथमिक लक्ष्य किसी इमेज के फाइल साइज़ को उसकी क्वालिटी से समझौता किए बिना कम करना है, जो इसे टेक्स्ट डॉक्यूमेंट, इंजीनियरिंग ड्रॉइंग और अन्य मोनोक्रोम इमेज के हाई-रेजोल्यूशन स्कैन के लिए उपयुक्त बनाता है।
G4 इमेज फॉर्मेट को समझने के लिए इसके पूर्ववर्ती, ग्रुप 3 (G3) कम्प्रेशन स्कीम से परिचित होना आवश्यक है। पहले के फैक्स मशीनों में उपयोग किए जाने वाले G3 ने एक-आयामी (1D) रन-लेंथ एन्कोडिंग जैसी तकनीकों को पेश करके मोनोक्रोम इमेज कम्प्रेशन की नींव रखी। हालाँकि, G3 की कम्प्रेशन क्षमता में सीमाएँ थीं, खासकर अधिक जटिल या विस्तृत इमेज के लिए। इन सीमाओं को दूर करने और कम्प्रेशन क्षमताओं में सुधार करने के लिए, G4 फॉर्मेट को दो-आयामी (2D) एन्कोडिंग स्कीम के साथ पेश किया गया, जो कम्प्रेशन क्षमता को बढ़ाता है, विशेष रूप से दोहराए जाने वाले पैटर्न वाली इमेज के लिए।
G4 फॉर्मेट के कम्प्रेशन एल्गोरिथम के पीछे का मूल सिद्धांत दो-आयामी (2D) संशोधित READ (रिलेटिव एलिमेंट एड्रेस डिज़ाइनेट) एन्कोडिंग का उपयोग है। यह दृष्टिकोण रन-लेंथ एन्कोडिंग की मूल अवधारणा पर आधारित है, जहाँ समान रंगीन पिक्सेल का अनुक्रम (आमतौर पर G4 के मामले में काला या सफेद) एक एकल डेटा बिंदु के रूप में संग्रहीत किया जाता है, जो रंग और लगातार पिक्सेल की संख्या को इंगित करता है। 2D कोडिंग स्कीम में, इमेज में प्रत्येक पंक्ति को स्वतंत्र रूप से व्यवहार करने के बजाय, G4 आसन्न पंक्तियों के बीच के अंतर की जाँच करता है। यह विधि पंक्तियों में दोहराए जाने वाले पैटर्न को कुशलतापूर्वक पहचानती है और उन्हें संपीड़ित करती है, जिससे लगातार पैटर्न वाली इमेज के फ़ाइल आकार को काफी कम किया जाता है।
G4 एन्कोडिंग प्रक्रिया में, पिक्सेल की प्रत्येक पंक्ति की तुलना उसके ठीक ऊपर की पंक्ति से की जाती है, जिसे संदर्भ रेखा के रूप में जाना जाता है। एल्गोरिथम पिक्सेल रंग में परिवर्तन (काले से सफेद और इसके विपरीत संक्रमण) की पहचान करता है और पिक्सेल की निरपेक्ष स्थिति के बजाय इन परिवर्तनों के बीच की दूरी को एन्कोड करता है। इन अंतरों को एन्कोड करके, G4 डेटा को कुशलतापूर्वक संपीड़ित करता है, विशेष रूप से उन दस्तावेज़ों में जहाँ कई पंक्तियाँ समान या समान होती हैं। यह सापेक्ष एन्कोडिंग विधि इस तथ्य का लाभ उठाती है कि टेक्स्टुअल और लाइन ड्राइंग सामग्री में अक्सर दोहराए जाने वाले पैटर्न शामिल होते हैं, जिससे G4 स्कैन किए गए दस्तावेज़ों और तकनीकी ड्रॉइंग को संपीड़ित करने के लिए विशेष रूप से उपयुक्त हो जाता है।
G4 कम्प्रेशन एल्गोरिथम की एक उल्लेखनीय विशेषता एन्कोडिंग ओवरहेड में इसका 'न्यूनतमवाद' है। यह अलग-अलग पंक्तियों या खंडों के लिए संपीड़ित डेटा स्ट्रीम के भीतर पारंपरिक मार्कर या हेडर के उपयोग से बचता है। इसके बजाय, G4 रन की लंबाई और संदर्भ और कोडिंग लाइनों के बीच की शिफ्ट का प्रतिनिधित्व करने के लिए कोड के एक कॉम्पैक्ट सेट पर निर्भर करता है। यह रणनीति G4 की उच्च कम्प्रेशन दरों में महत्वपूर्ण योगदान देती है, एन्कोडिंग प्रक्रिया के दौरान पेश किए गए अतिरिक्त डेटा को कम करके, यह सुनिश्चित करती है कि संपीड़ित फ़ाइल यथासंभव छोटी हो।
कम्प्रेशन क्षमता G4 फॉर्मेट की अपील का एक महत्वपूर्ण पहलू है, लेकिन इमेज क्वालिटी पर इसका प्रभाव ध्यान देने योग्य है। अपनी उच्च कम्प्रेशन दरों के बावजूद, G4 दोषरहित डेटा कम्प्रेशन सुनिश्चित करता है। इसका मतलब यह है कि जब एक G4-संपीड़ित इमेज को डीकंप्रेस किया जाता है, तो उसे बिना किसी विवरण या गुणवत्ता की हानि के उसकी मूल स्थिति में बहाल कर दिया जाता है। यह दोषरहित प्रकृति उन अनुप्रयोगों के लिए आवश्यक है जहाँ पुनरुत्पादित इमेज की सटीकता महत्वपूर्ण है, जैसे कानूनी दस्तावेज़, वास्तुकला योजनाएँ और स्कैन किए गए टेक्स्ट।
TIFF विनिर्देश में G4 इमेज फॉर्मेट का एकीकरण इसकी बहुमुखी प्रतिभा और उपयोगिता को बढ़ाता है। TIFF, एक लचीला और व्यापक रूप से समर्थित इमेज फ़ाइल फ़ॉर्मेट होने के कारण, G4 सहित विभिन्न कम्प्रेशन स्कीम को शामिल करने की अनुमति देता है, बिना TIFF द्वारा प्रदान की जाने वाली कार्यक्षमता से समझौता किए, जैसे एक ही फ़ाइल में कई इमेज के लिए समर्थन, मेटाडेटा संग्रहण और विभिन्न प्लेटफ़ॉर्म और डिवाइस पर संगतता। इस एकीकरण का मतलब है कि उपयोगकर्ता TIFF फॉर्मेट की समृद्ध विशेषताओं और व्यापक संगतता को बनाए रखते हुए G4 के कुशल कम्प्रेशन से ला भ उठा सकते हैं।
हालाँकि, G4 इमेज फॉर्मेट का उपयोग कुछ विचारों और सीमाओं को प्रस्तुत करता है जिनके बारे में उपयोगकर्ताओं को पता होना चाहिए। उदाहरण के लिए, G4 कम्प्रेशन की दक्षता इमेज की सामग्री पर अत्यधिक निर्भर है। एक समान रंग या दोहराए जाने वाले पैटर्न वाले बड़े क्षेत्रों वाली इमेज को यादृच्छिक या अत्यधिक विस्तृत सामग्री वाली इमेज की तुलना में अधिक प्रभावी ढंग से संपीड़ित किया जाता है। इस विशेषता का मतलब है कि जबकि G4 टेक्स्ट दस्तावेज़ों और सरल रेखाचित्रों के लिए उत्कृष्ट है, इसकी कम्प्रेशन क्षमता और प्रभावशीलता तस्वीरों या जटिल ग्रेस्केल इमेज के लिए कम हो सकती है।
इसके अलावा, G4 कम्प्रेशन और डीकम्प्रेशन का प्रदर्शन उपलब्ध कम्प्यूटेशनल संसाधनों से प्रभावित होता है। एन्कोडिंग और डिकोडिंग प्रक्रियाओं में शामिल दो-आयामी विश्लेषण को सरल, एक-आयामी योजनाओं की तुलना में अधि क प्रोसेसिंग पावर की आवश्यकता होती है। नतीजतन, सीमित कम्प्यूटेशनल क्षमता वाले डिवाइस, जैसे पुराने फैक्स मशीन या स्कैनर, G4 संपीड़ित इमेज के साथ काम करते समय धीमी प्रोसेसिंग समय का अनुभव कर सकते हैं। इस कम्प्यूटेशनल मांग को कम फ़ाइल आकार और संग्रहण आवश्यकताओं के लाभों के विरुद्ध संतुलित किया जाना चाहिए।
इन विचारों के बावजूद, विभिन्न अनुप्रयोगों में G4 इमेज फॉर्मेट को अपनाना इसके मूल्य को उजागर करता है। दस्तावेज़ संग्रह और डिजिटल पुस्तकालयों के क्षेत्र में, विवरण का त्याग किए बिना फ़ाइल आकार को महत्वपूर्ण रूप से कम करने की G4 की क्षमता
यह कनवर्टर पूरी तरह से आपके ब्राउज़र में चलता है। जब आप किसी फ़ाइल का चयन करते हैं, तो उसे मेमोरी में पढ़ा जाता है और चयनित प्रारूप में परिवर्तित किया जाता है। फिर आप परिवर्तित फ़ाइल डाउनलोड कर सकते हैं।
रूपांतरण तुरंत शुरू हो जाते हैं, और अधिकांश फ़ाइलें एक सेकंड के भीतर परिवर्तित हो जाती हैं। बड़ी फ़ाइलों में अधिक समय लग सकता है।
आपकी फाइलें कभी भी हमारे सर्वर पर अपलोड नहीं की जाती हैं। वे आपके ब्राउज़र में परिवर्तित हो जाती हैं, और फिर परिवर्तित फ़ाइल डाउनलोड हो जाती है। हम आपकी फाइलें कभी नहीं देखते हैं।
हम जेपीईजी, पीएनजी, जीआईएफ, वेबपी, एसवीजी, बीएमपी, টিআইএফএফ, और अधिक सहित सभी छवि प्रारूपों के बीच रूपांतरण का समर्थन करते हैं।
यह कनवर्टर पूरी तरह से मुफ्त है, और हमेशा मुफ्त रहेगा। क्योंकि यह आपके ब्राउज़र में चलता है, हमें सर्वर के लिए भुगतान करने की आवश्यकता नहीं है, इसलिए हमें आपसे शुल्क लेने की आवश्यकता नहीं है।
हाँ! आप एक साथ जितनी चाहें उतनी फाइलें परिवर्तित कर सकते हैं। बस उन्हें जोड़ते समय कई फाइलों का चयन करें।