JPEG ตัวลบพื้นหลัง

ลบภาพพื้นหลังจาก ภาพใด ๆ ในเบราว์เซอร์ของคุณ ฟรีตลอดไป

ส่วนตัวและปลอดภัย

ทุกอย่างเกิดขึ้นในเบราว์เซอร์ของคุณ ไฟล์ของคุณไม่เคยสัมผัสเซิร์ฟเวอร์ของเรา

เร็วสุดขีด

ไม่มีการอัปโหลด ไม่ต้องรอ แปลงทันทีที่คุณวางไฟล์

ฟรีจริงๆ

ไม่ต้องใช้บัญชี ไม่มีค่าใช้จ่ายแอบแฝง ไม่มีลูกเล่นขนาดไฟล์

การลบพื้นหลัง แยกวัตถุออกจากสภาพแวดล้อมเพื่อให้คุณสามารถวางไว้บน ความโปร่งใส, สลับฉาก, หรือประกอบเข้ากับการออกแบบใหม่. ภายใต้กระโปรงคุณกำลังประเมิน อัลฟ่าแมท—ความทึบต่อพิกเซลจาก 0 ถึง 1—แล้ว การประกอบอัลฟ่า โฟร์กราวด์ поверх สิ่งอื่น. นี่คือคณิตศาสตร์จาก Porter–Duff และสาเหตุของข้อผิดพลาดที่คุ้นเคยเช่น “ขอบ” และ อัลฟ่าตรงกับอัลฟ่าที่คูณไว้ล่วงหน้า. สำหรับคำแนะนำเชิงปฏิบัติเกี่ยวกับการคูณล่วงหน้าและสีเชิงเส้น, ดู บันทึก Win2D ของ Microsoft, Søren Sandmann, และ บทความของ Lomont เกี่ยวกับการผสมเชิงเส้น.


วิธีหลักที่คนใช้ลบพื้นหลัง

1) คีย์โครมา (“หน้าจอเขียว/น้ำเงิน”)

หากคุณสามารถควบคุมการจับภาพได้, ทาสีพื้นหลังเป็นสีทึบ (ส่วนใหญ่มักเป็นสีเขียว) และ คีย์ สีนั้นออกไป. มันรวดเร็ว, ผ่านการทดสอบการต่อสู้ในภาพยนตร์และการออกอากาศ, และเหมาะสำหรับวิดีโอ. ข้อแลกเปลี่ยนคือแสงและตู้เสื้อผ้า: แสงสีจะรั่วไหลไปยังขอบ (โดยเฉพาะเส้นผม), ดังนั้นคุณจะใช้เครื่องมือ despill เพื่อทำให้การปนเปื้อนเป็นกลาง. ไพรเมอร์ที่ดี ได้แก่ เอกสารของ Nuke, Mixing Light, และการสาธิต Fusion แบบลงมือปฏิบัติ.

2) การแบ่งส่วนแบบโต้ตอบ (CV แบบคลาสสิก)

สำหรับภาพเดี่ยวที่มีพื้นหลังรก, อัลกอริทึม แบบโต้ตอบ ต้องการคำใบ้จากผู้ใช้เล็กน้อย—เช่น, สี่เหลี่ยมผืนผ้าหลวมๆ หรือลายเส้นขยุกขยิก—และมาบรรจบกันเป็นหน้ากากที่คมชัด. วิธีการที่เป็นที่ยอมรับคือ GrabCut (บทในหนังสือ), ซึ่งเรียนรู้แบบจำลองสีสำหรับโฟร์กราวด์/พื้นหลัง และใช้การตัดกราฟซ้ำๆ เพื่อแยกพวกมัน. คุณจะเห็นแนวคิดที่คล้ายกันใน การเลือกโฟร์กราวด์ของ GIMP โดยใช้ SIOX (ปลั๊กอิน ImageJ).

3) การทำแมทภาพ (อัลฟ่าแบบละเอียด)

การทำแมท แก้ปัญหาความโปร่งใสแบบเศษส่วนที่ขอบเขตที่บอบบาง (ผม, ขน, ควัน, แก้ว). การทำแมทแบบปิดคลาสสิก ใช้ trimap (แน่นอน-หน้า/แน่นอน-หลัง/ไม่ทราบ) และแก้ปัญหาระบบเชิงเส้นสำหรับอัลฟ่าที่มีความเที่ยงตรงของขอบสูง. การทำแมทภาพแบบลึกสมัยใหม่ ฝึกอบรมโครงข่ายประสาทเทียมบนชุดข้อมูล Adobe Composition-1K (เอกสาร MMEditing), และได้รับการประเมินด้วยเมตริกเช่น SAD, MSE, Gradient, และ Connectivity (คำอธิบายเกณฑ์มาตรฐาน).

4) การตัดภาพด้วยการเรียนรู้เชิงลึก (ไม่มี trimap)

  • U2-Net (การตรวจจับวัตถุเด่น) เป็นเครื่องมือ “ลบพื้นหลัง” ทั่วไปที่แข็งแกร่ง (repo).
  • MODNet มุ่งเป้าไปที่การทำแมทภาพบุคคลแบบเรียลไทม์ (PDF).
  • F, B, Alpha (FBA) Matting ร่วมกันทำนาย передний план, พื้นหลัง, และอัลฟ่าเพื่อลดรัศมีสี (repo).
  • Background Matting V2 สมมติว่ามีแผ่นพื้นหลังและให้ผลลัพธ์เป็นแมทระดับเส้นผมแบบเรียลไทม์ที่ความละเอียดสูงสุด 4K/30fps (หน้าโครงการ, repo).

งานแบ่งส่วนที่เกี่ยวข้องก็มีประโยชน์เช่นกัน: DeepLabv3+ ปรับปรุงขอบเขตด้วยตัวเข้ารหัส-ตัวถอดรหัสและคอนโวลูชัน atrous (PDF); Mask R-CNN ให้หน้ากากต่ออินสแตนซ์ (PDF); และ SAM (Segment Anything) เป็น โมเดลพื้นฐาน ที่สามารถแจ้งได้ ที่สร้างหน้ากากแบบ zero-shot บนภาพที่ไม่คุ้นเคย.


เครื่องมือยอดนิยมทำอะไรได้บ้าง


เคล็ดลับเวิร์กโฟลว์สำหรับการตัดภาพที่สะอาดขึ้น

  1. ถ่ายภาพอย่างชาญฉลาด. แสงที่ดีและความคมชัดของวัตถุ-พื้นหลังที่แข็งแกร่งช่วยได้ทุกวิธี. ด้วยหน้าจอเขียว/น้ำเงิน, วางแผนสำหรับ despill (คู่มือ).
  2. เริ่มกว้าง, ปรับแต่งให้แคบ. เรียกใช้การเลือกอัตโนมัติ (เลือกวัตถุ, U2-Net, SAM), จากนั้นปรับแต่งขอบด้วยพู่กันหรือการทำแมท (เช่น, แบบปิด).
  3. ใส่ใจกับความโปร่งแสง. แก้ว, ผ้าคลุมหน้า, การเบลอจากการเคลื่อนไหว, ผมที่ปลิวไสวต้องการอัลฟ่าที่แท้จริง (ไม่ใช่แค่หน้ากากแข็ง). วิธีการที่กู้คืน F/B/α ยังช่วยลดรัศมี.
  4. รู้จักอัลฟ่าของคุณ. ตรงกับที่คูณไว้ล่วงหน้า สร้างพฤติกรรมขอบที่แตกต่างกัน; ส่งออก/ประกอบอย่างสม่ำเสมอ (ดู ภาพรวม, Hargreaves).
  5. เลือกเอาต์พุตที่เหมาะสม. สำหรับ “ไม่มีพื้นหลัง” ให้ส่งแรสเตอร์ที่มีอัลฟ่าที่สะอาด (เช่น, PNG/WebP) หรือเก็บไฟล์เลเยอร์ที่มีหน้ากากไว้หากคาดว่าจะมีการแก้ไขเพิ่มเติม. กุญแจสำคัญคือ คุณภาพของอัลฟ่า ที่คุณคำนวณ—มีรากฐานมาจาก Porter–Duff.

คุณภาพและการประเมินผล

งานวิชาการรายงานข้อผิดพลาด SAD, MSE, Gradient, และ Connectivity บน Composition-1K. หากคุณกำลังเลือกโมเดล, ให้มองหาเมตริกเหล่านั้น (คำจำกัดความของเมตริก; ส่วนเมตริกของ Background Matting). สำหรับภาพบุคคล/วิดีโอ, MODNet และ Background Matting V2 แข็งแกร่ง; สำหรับภาพ “วัตถุเด่น” ทั่วไป, U2-Net เป็นพื้นฐานที่มั่นคง; สำหรับความโปร่งใสที่ยาก, FBA อาจสะอาดกว่า.


กรณีขอบทั่วไป (และวิธีแก้ไข)

  • ผมและขน: ชอบการทำแมท (trimap หรือการทำแมทภาพบุคคลเช่น MODNet) และตรวจสอบบนกระดานหมากรุก.
  • โครงสร้างละเอียด (ซี่ล้อจักรยาน, สายเบ็ด): ใช้อินพุตความละเอียดสูงและตัวแบ่งส่วนที่รับรู้ขอบเขตเช่น DeepLabv3+ เป็นขั้นตอนก่อนการทำแมท.
  • สิ่งที่มองทะลุได้ (ควัน, แก้ว): คุณต้องใช้อัลฟ่าแบบเศษส่วนและมักจะต้องมีการประมาณสี передний план (FBA).
  • การประชุมทางวิดีโอ: หากคุณสามารถจับภาพแผ่นที่สะอาดได้, Background Matting V2 ดูเป็นธรรมชาติมากกว่าการสลับ “พื้นหลังเสมือน” แบบง่ายๆ.

สิ่งนี้ปรากฏในโลกแห่งความเป็นจริงที่ไหน


ทำไมการตัดภาพบางครั้งดูปลอม (และวิธีแก้ไข)

  • การรั่วไหลของสี: แสงสีเขียว/น้ำเงินล้อมรอบวัตถุ—ใช้ การควบคุม despill หรือการเปลี่ยนสีเป้าหมาย.
  • รัศมี/ขอบ: โดยปกติแล้วเป็นการตีความอัลฟ่าที่ไม่ตรงกัน (ตรงกับที่คูณไว้ล่วงหน้า) หรือพิกเซลขอบที่ปนเปื้อนจากพื้นหลังเก่า; แปลง/ตีความให้ถูกต้อง (ภาพรวม, รายละเอียด).
  • การเบลอ/เกรนที่ไม่ถูกต้อง: วางวัตถุที่คมกริบลงบนพื้นหลังที่นุ่มนวลแล้วมันจะโดดเด่น; จับคู่การเบลอของเลนส์และเกรนหลังการประกอบ (ดู พื้นฐาน Porter–Duff).

คู่มือ TL;DR

  1. หากคุณควบคุมการจับภาพ: ใช้คีย์โครมา; ให้แสงสว่างสม่ำเสมอ; วางแผน despill.
  2. หากเป็นภาพถ่ายครั้งเดียว: ลองใช้ ลบพื้นหลัง ของ Photoshop, ตัวลบ ของ Canva, หรือ remove.bg; ปรับแต่งด้วยพู่กัน/การทำแมทสำหรับผม.
  3. หากคุณต้องการขอบระดับโปร덕ชั่น: ใช้การทำแมท ( แบบปิด หรือแบบลึก) และตรวจสอบอัลฟ่าบนความโปร่งใส; ระวัง การตีความอัลฟ่า.
  4. สำหรับภาพบุคคล/วิดีโอ: พิจารณา MODNet หรือ Background Matting V2; สำหรับการแบ่งส่วนที่แนะนำด้วยการคลิก, SAM เป็นส่วนหน้าที่ทรงพลัง.

รูปแบบ JPEG คืออะไร?

รูปแบบ JFIF ของกลุ่มผู้เชี่ยวชาญด้านภาพร่วม

JPEG ซึ่งย่อมาจาก Joint Photographic Experts Group เป็นวิธีการบีบอัดแบบสูญเสียข้อมูลที่ใช้กันทั่วไปสำหรับภาพดิจิทัล โดยเฉพาะอย่างยิ่งสำหรับภาพที่ถ่ายด้วยกล้องดิจิทัล ระดับการบีบอัดสามารถปรับได้ ซึ่งช่วยให้สามารถเลือกการแลกเปลี่ยนระหว่างขนาดที่จัดเก็บและคุณภาพของภาพได้ JPEG มักจะบรรลุการบีบอัด 10:1 โดยสูญเสียคุณภาพของภาพเพียงเล็กน้อย

อัลกอริทึมการบีบอัด JPEG เป็นหัวใจหลักของมาตรฐาน JPEG กระบวนการเริ่มต้นด้วยการแปลงภาพดิจิทัลจากพื้นที่สี RGB ทั่วไปไปเป็นพื้นที่สีอื่นที่เรียกว่า YCbCr พื้นที่สี YCbCr แยกภาพออกเป็นความสว่าง (Y) ซึ่งแสดงระดับความสว่าง และความอิ่มตัวของสี (Cb และ Cr) ซึ่งแสดงข้อมูลสี การแยกนี้เป็นประโยชน์เพราะดวงตาของมนุษย์มีความไวต่อการเปลี่ยนแปลงของความสว่างมากกว่าสี ซึ่งช่วยให้การบีบอัดสามารถใช้ประโยชน์จากสิ่งนี้ได้โดยการบีบอัดข้อมูลสีมากกว่าความสว่าง

เมื่อภาพอยู่ในพื้นที่สี YCbCr ขั้นตอนถัดไปในกระบวนการบีบอัด JPEG คือการลดขนาดช่องความอิ่มตัวของสี การลดขนาดจะลดความละเอียดของข้อมูลความอิ่มตัวของสี ซึ่งโดยทั่วไปจะไม่ส่งผลกระทบต่อคุณภาพของภาพที่รับรู้ได้อย่างมีนัยสำคัญ เนื่องจากดวงตาของมนุษย์มีความไวต่อรายละเอียดของสีน้อยกว่า ขั้นตอนนี้เป็นตัวเลือกและสามารถปรับได้ตามความสมดุลที่ต้องการระหว่างคุณภาพของภาพและขนาดไฟล์

หลังจากลดขนาดแล้ว ภาพจะถูกแบ่งออกเป็นบล็อก โดยปกติจะมีขนาด 8x8 พิกเซล จากนั้นแต่ละบล็อกจะถูกประมวลแยกกัน ขั้นตอนแรกในการประมวลผลแต่ละบล็อกคือการใช้ Discrete Cosine Transform (DCT) DCT เป็นการดำเนินการทางคณิตศาสตร์ที่แปลงข้อมูลโดเมนเชิงพื้นที่ (ค่าพิกเซล) ไปเป็นโดเมนความถี่ ผลลัพธ์คือเมทริกซ์ของค่าสัมประสิทธิ์ความถี่ที่แสดงข้อมูลของบล็อกภาพในแง่ของส่วนประกอบความถี่เชิงพื้นที่

จากนั้นค่าสัมประสิทธิ์ความถี่ที่ได้จาก DCT จะถูกหาปริมาณ การหาปริมาณเป็นกระบวนการแมปชุดค่าอินพุตขนาดใหญ่ไปยังชุดที่เล็กลง ในกรณีของ JPEG หมายถึงการลดความแม่นยำของค่าสัมประสิทธิ์ความถี่ นี่คือจุดที่เกิดการสูญเสียข้อมูลในส่วนของการบีบอัด เนื่องจากข้อมูลภาพบางส่วนจะถูกละทิ้ง ขั้นตอนการหาปริมาณจะถูกควบคุมโดยตารางการหาปริมาณ ซึ่งกำหนดว่าจะใช้การบีบอัดกับส่วนประกอบความถี่แต่ละส่วนเท่าใด ตารางการหาปริมาณสามารถปรับได้เพื่อให้ได้คุณภาพของภาพที่สูงขึ้น (การบีบอัดน้อยลง) หรือขนาดไฟล์ที่เล็กลง (การบีบอัดมากขึ้น)

หลังจากการหาปริมาณ ค่าสัมประสิทธิ์จะถูกจัดเรียงตามลำดับซิกแซก โดยเริ่มจากมุมซ้ายบนและทำตามรูปแบบที่ให้ความสำคัญกับส่วนประกอบความถี่ต่ำมากกว่าส่วนประกอบความถี่สูง นี่เป็นเพราะส่วนประกอบความถี่ต่ำ (ซึ่งแสดงส่วนที่สม่ำเสมอมากขึ้นของภาพ) มีความสำคัญต่อรูปลักษณ์โดยรวมมากกว่าส่วนประกอบความถี่สูง (ซึ่งแสดงรายละเอียดและขอบที่ละเอียดกว่า)

ขั้นตอนถัดไปในกระบวนการบีบอัด JPEG คือการเข้ารหัสเอนโทรปี ซึ่งเป็นวิธีการบีบอัดแบบไม่สูญเสียข้อมูล รูปแบบการเข้ารหัสเอนโทรปีที่ใช้กันทั่วไปที่สุดใน JPEG คือการเข้ารหัส Huffman แม้ว่าการเข้ารหัสเลขคณิตก็เป็นตัวเลือกเช่นกัน การเข้ารหัส Huffman ทำงานโดยกำหนดรหัสที่สั้นกว่าให้กับการเกิดขึ้นบ่อยกว่า และรหัสที่ยาวกว่าให้กับการเกิดขึ้นน้อยกว่า เนื่องจากการจัดลำดับแบบซิกแซกมีแนวโน้มที่จะจัดกลุ่มค่าสัมประสิทธิ์ความถี่ที่คล้ายกันเข้าด้วยกัน จึงเพิ่มประสิทธิภาพของการเข้ารหัส Huffman

เมื่อการเข้ารหัสเอนโทรปีเสร็จสมบูรณ์ ข้อมูลที่บีบอัดจะถูกจัดเก็บในรูปแบบไฟล์ที่เป็นไปตามมาตรฐาน JPEG รูปแบบไฟล์นี้มีส่วนหัวที่มีข้อมูลเกี่ยวกับภาพ เช่น ขนาดและตารางการหาปริมาณที่ใช้ ตามด้วยข้อมูลภาพที่เข้ารหัส Huffman รูปแบบไฟล์ยังรองรับการรวมเมตาดาต้า เช่น ข้อมูล EXIF ซึ่งอาจมีข้อมูลเกี่ยวกับการตั้งค่ากล้องที่ใช้ในการถ่ายภาพ วันและเวลาที่ถ่าย และรายละเอียดอื่นๆ ที่เกี่ยวข้อง

เมื่อเปิดภาพ JPEG กระบวนการคลายการบีบอัดจะย้อนกลับขั้นตอนการบีบอัดโดยพื้นฐาน ข้อมูลที่เข้ารหัส Huffman จะถูกถอดรหัส ค่าสัมประสิทธิ์ความถี่ที่หาปริมาณแล้วจะถูกยกเลิกการหาปริมาณโดยใช้ตารางการหาปริมาณเดียวกันกับที่ใช้ในการบีบอัด และ Inverse Discrete Cosine Transform (IDCT) จะถูกนำไปใช้กับแต่ละบล็อกเพื่อแปลงข้อมูลโดเมนความถี่กลับเป็นค่าพิกเซลโดเมนเชิงพื้นที่

กระบวนการยกเลิกการหาปริมาณและ IDCT ก่อให้เกิดข้อผิดพลาดบางประการเนื่องจากลักษณะการสูญเสียข้อมูลของการบีบอัด ซึ่งเป็นสาเหตุที่ JPEG ไม่เหมาะสำหรับภาพที่จะมีการแก้ไขและบันทึกซ้ำหลายครั้ง ทุกครั้งที่มีการบันทึกภาพ JPEG ภาพนั้นจะผ่านกระบวนการบีบอัดอีกครั้ง และข้อมูลภาพเพิ่มเติมจะสูญหายไป สิ่งนี้อาจนำไปสู่การเสื่อมสภาพของภาพที่สังเกตเห็นได้ชัดเจนเมื่อเวลาผ่านไป ซึ่งเป็นปรากฏการณ์ที่เรียกว่า 'การสูญเสียรุ่น'

แม้ว่าการบีบอัด JPEG จะเป็นแบบสูญเสียข้อมูล แต่ก็ยังคงเป็นรูปแบบภาพที่นิยมเนื่องจากความยืดหยุ่นและประสิทธิภาพ ภาพ JPEG อาจมีขนาดไฟล์เล็กมาก ซึ่งทำให้เหมาะสำหรับการใช้งานบนเว็บ ซึ่งแบนด์วิดท์และเวลาในการโหลดเป็นสิ่งสำคัญ นอกจากนี้ มาตรฐาน JPEG ยังมีโหมดแบบก้าวหน้า ซึ่งช่วยให้สามารถเข้ารหัสภาพในลักษณะที่สามารถถอดรหัสได้หลายครั้ง โดยแต่ละครั้งจะปรับปรุงความละเอียดของภาพ สิ่งนี้มีประโยชน์อย่างยิ่งสำหรับภาพบนเว็บ เนื่องจากช่วยให้สามารถแสดงภาพคุณภาพต่ำได้อย่างรวดเร็ว โดยคุณภาพจะดีขึ้นเมื่อดาวน์โหลดข้อมูลเพิ่มเติม

JPEG ยังมีข้อจำกัดบางประการและไม่ใช่ตัวเลือกที่ดีที่สุดสำหรับภาพทุกประเภท ตัวอย่างเช่น ไม่เหมาะสำหรับภาพที่มีขอบคมหรือข้อความที่มีคอนทราสต์สูง เนื่องจากการบีบอัดอาจสร้างสิ่งประดิษฐ์ที่สังเกตเห็นได้รอบๆ บริเวณเหล่านี้ นอกจากนี้ JPEG ไม่รองรับความโปร่งใส ซึ่งเป็นคุณสมบัติที่มีให้โดยรูปแบบอื่นๆ เช่น PNG และ GIF

เพื่อแก้ไขข้อจำกัดบางประการของมาตรฐาน JPEG เดิม จึงมีการพัฒนาฟอร์แมตใหม่ เช่น JPEG 2000 และ JPEG XR ฟอร์แมตเหล่านี้ให้ประสิทธิภาพการบีบอัดที่ดีขึ้น รองรับความลึกของบิตที่สูงขึ้น และคุณสมบัติเพิ่มเติม เช่น ความโปร่งใสและการบีบอัดแบบไม่สูญเสียข้อมูล อย่างไรก็ตาม พวกเขายังไม่ได้รับการยอมรับอย่างแพร่หลายในระดับเดียวกับรูปแบบ JPEG เดิม

สรุปแล้ว รูปแบบภาพ JPEG เป็นการผสมผสานที่ซับซ้อนของคณิตศาสตร์ จิตวิทยาด้านการมองเห็นของมนุษย์ และวิทยาการคอมพิวเตอร์ การใช้งานอย่างแพร่หลายเป็นเครื่องพิสูจน์ถึงประสิทธิภาพในการลดขนาดไฟล์ในขณะที่ยังคงรักษาคุณภาพของภาพในระดับที่ยอมรับได้สำหรับแอปพลิเคชันส่วนใหญ่ ความเข้าใจในแง่เทคนิคของ JPEG สามารถช่วยให้ผู้ใช้ตัดสินใจได้อย่างชาญฉลาดว่าจะใช้รูปแบบนี้เมื่อใด และจะปรับแต่งภาพของตนอย่างไรเพื่อให้ได้ความสมดุลระหว่างคุณภาพและขนาดไฟล์ที่เหมาะกับความต้องการของตนมากที่สุด

รูปแบบที่รองรับ

AAI.aai

ภาพ AAI Dune

AI.ai

Adobe Illustrator CS2

AVIF.avif

รูปแบบไฟล์ภาพ AV1

BAYER.bayer

ภาพ Bayer ดิบ

BMP.bmp

ภาพ bitmap ของ Microsoft Windows

CIN.cin

ไฟล์ภาพ Cineon

CLIP.clip

Image Clip Mask

CMYK.cmyk

ตัวอย่างสีฟ้า, สีแม่จัน, สีเหลือง, และสีดำดิบ

CUR.cur

ไอคอนของ Microsoft

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

ภาพ SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

รูปแบบเอกสารพกพาที่มีการหุ้มห่อ

EPI.epi

รูปแบบการแลกเปลี่ยน PostScript ที่มีการหุ้มห่อของ Adobe

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

รูปแบบการแลกเปลี่ยน PostScript ที่มีการหุ้มห่อของ Adobe

EPT.ept

PostScript ที่มีการหุ้มห่อพร้อมตัวอย่าง TIFF

EPT2.ept2

ระดับ PostScript ที่มีการหุ้มห่อ II พร้อมตัวอย่าง TIFF

EXR.exr

ภาพที่มีช่วงไดนามิกสูง (HDR)

FF.ff

Farbfeld

FITS.fits

ระบบการขนส่งภาพที่ยืดหยุ่น

GIF.gif

รูปแบบการแลกเปลี่ยนกราฟิกของ CompuServe

HDR.hdr

ภาพที่มีช่วงไดนามิกสูง

HEIC.heic

คอนเทนเนอร์ภาพประสิทธิภาพสูง

HRZ.hrz

Slow Scan TeleVision

ICO.ico

ไอคอนของ Microsoft

ICON.icon

ไอคอนของ Microsoft

J2C.j2c

codestream JPEG-2000

J2K.j2k

codestream JPEG-2000

JNG.jng

กราฟิกเครือข่าย JPEG

JP2.jp2

รูปแบบไฟล์ JPEG-2000

JPE.jpe

รูปแบบ JFIF ของกลุ่มผู้เชี่ยวชาญด้านภาพร่วม

JPEG.jpeg

รูปแบบ JFIF ของกลุ่มผู้เชี่ยวชาญด้านภาพร่วม

JPG.jpg

รูปแบบ JFIF ของกลุ่มผู้เชี่ยวชาญด้านภาพร่วม

JPM.jpm

รูปแบบไฟล์ JPEG-2000

JPS.jps

รูปแบบ JPS ของกลุ่มผู้เชี่ยวชาญด้านภาพร่วม

JPT.jpt

รูปแบบไฟล์ JPEG-2000

JXL.jxl

ภาพ JPEG XL

MAP.map

ฐานข้อมูลภาพที่ไม่มีรอยต่อและมีความละเอียดหลายระดับ (MrSID)

MAT.mat

รูปแบบภาพ MATLAB level 5

PAL.pal

พิกซ์แมป Palm

PALM.palm

พิกซ์แมป Palm

PAM.pam

รูปแบบบิตแมป 2 มิติทั่วไป

PBM.pbm

รูปแบบบิตแมปพกพา (ขาวและดำ)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

รูปแบบ ImageViewer ฐานข้อมูล Palm

PDF.pdf

รูปแบบเอกสารพกพา

PDFA.pdfa

รูปแบบเอกสารเก็บถาวร

PFM.pfm

รูปแบบลอยพกพา

PGM.pgm

รูปแบบกรายแมปพกพา (สเกลเทา)

PGX.pgx

รูปแบบไม่บีบอัด JPEG 2000

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

รูปแบบ JFIF ของกลุ่มผู้เชี่ยวชาญด้านภาพถ่ายร่วม

PNG.png

กราฟิกเครือข่ายพกพา

PNG00.png00

PNG สืบทอดความลึกบิต, ประเภทสีจากรูปภาพเดิม

PNG24.png24

RGB 24 บิตที่ไม่โปร่งใสหรือโปร่งใสแบบไบนารี (zlib 1.2.11)

PNG32.png32

RGBA 32 บิตที่ไม่โปร่งใสหรือโปร่งใสแบบไบนารี

PNG48.png48

RGB 48 บิตที่ไม่โปร่งใสหรือโปร่งใสแบบไบนารี

PNG64.png64

RGBA 64 บิตที่ไม่โปร่งใสหรือโปร่งใสแบบไบนารี

PNG8.png8

8 บิตที่ไม่โปร่งใสหรือโปร่งใสแบบไบนารี

PNM.pnm

anymap พกพา

PPM.ppm

รูปแบบพิกซ์แมปพกพา (สี)

PS.ps

ไฟล์ Adobe PostScript

PSB.psb

รูปแบบเอกสารขนาดใหญ่ของ Adobe

PSD.psd

บิตแมป Adobe Photoshop

RGB.rgb

ตัวอย่างสีแดง, สีเขียว, และสีน้ำเงินดิบ

RGBA.rgba

ตัวอย่างสีแดง, สีเขียว, สีน้ำเงิน, และสีอัลฟาดิบ

RGBO.rgbo

ตัวอย่างสีแดง, สีเขียว, สีน้ำเงิน, และความทึบดิบ

SIX.six

รูปแบบกราฟิก DEC SIXEL

SUN.sun

Sun Rasterfile

SVG.svg

กราฟิกเวกเตอร์ขนาดยืดหยุ่น

TIFF.tiff

รูปแบบไฟล์ภาพที่มีแท็ก

VDA.vda

ภาพ Truevision Targa

VIPS.vips

ภาพ VIPS

WBMP.wbmp

ภาพ Bitmap ไร้สาย (ระดับ 0)

WEBP.webp

รูปแบบภาพ WebP

YUV.yuv

CCIR 601 4:1:1 หรือ 4:2:2

คำถามที่ถามบ่อย

ทำงานอย่างไร

ตัวแปลงนี้ทำงานอย่างสมบูรณ์ในเบราว์เซอร์ของคุณ เมื่อคุณเลือกไฟล์ ไฟล์จะถูกอ่านเข้าไปในหน่วยความจำและแปลงเป็นรูปแบบที่เลือก จากนั้นคุณสามารถดาวน์โหลดไฟล์ที่แปลงแล้วได้

การแปลงไฟล์ใช้เวลานานเท่าใด

การแปลงจะเริ่มขึ้นทันที และไฟล์ส่วนใหญ่จะถูกแปลงภายในเวลาไม่ถึงหนึ่งวินาที ไฟล์ขนาดใหญ่อาจใช้เวลานานกว่านั้น

จะเกิดอะไรขึ้นกับไฟล์ของฉัน

ไฟล์ของคุณจะไม่ถูกอัปโหลดไปยังเซิร์ฟเวอร์ของเรา ไฟล์เหล่านั้นจะถูกแปลงในเบราว์เซอร์ของคุณ จากนั้นไฟล์ที่แปลงแล้วจะถูกดาวน์โหลด เราไม่เคยเห็นไฟล์ของคุณ

ฉันสามารถแปลงไฟล์ประเภทใดได้บ้าง

เรารองรับการแปลงระหว่างรูปแบบภาพทั้งหมด รวมถึง JPEG, PNG, GIF, WebP, SVG, BMP, TIFF และอื่นๆ

ค่าใช้จ่ายเท่าไหร่

ตัวแปลงนี้ฟรีโดยสมบูรณ์ และจะฟรีตลอดไป เนื่องจากทำงานในเบราว์เซอร์ของคุณ เราจึงไม่ต้องจ่ายค่าเซิร์ฟเวอร์ ดังนั้นเราจึงไม่เรียกเก็บเงินจากคุณ

ฉันสามารถแปลงหลายไฟล์พร้อมกันได้หรือไม่

ใช่! คุณสามารถแปลงไฟล์ได้มากเท่าที่คุณต้องการในคราวเดียว เพียงเลือกหลายไฟล์เมื่อคุณเพิ่ม