PFM Eliminar fondo

Elimina el fondo de cualquier imagen en tu navegador. Gratis, para siempre.

Todo local

Nuestro convertidor se ejecuta en su navegador, por lo que nunca vemos sus datos.

Ultrarrápido

No es necesario que subas tus archivos a un servidor: las conversiones comienzan al instante.

Seguro por defecto

A diferencia de otros convertidores, sus archivos nunca se suben a nosotros.

La eliminación de fondo separa un sujeto de su entorno para que puedas colocarlo sobre transparencia, cambiar la escena o componerlo en un nuevo diseño. Bajo el capó, estás estimando una máscara alfa, una opacidad por píxel de 0 a 1, y luego aplicando composición alfa al primer plano sobre otra cosa. Esta es la matemática de Porter–Duff y la causa de problemas comunes como los “flecos” y alfa recto vs. pre-multiplicado. Para obtener una guía práctica sobre la pre-multiplicación y el color lineal, consulta las notas de Win2D de Microsoft, Søren Sandmann y el artículo de Lomont sobre la mezcla lineal.


Las principales formas en que la gente elimina los fondos

1) Croma (“pantalla verde/azul”)

Si puedes controlar la captura, pinta el fondo de un color sólido (a menudo verde) y elimina ese tono. Es rápido, de eficacia probada en cine y televisión, e ideal para vídeo. Las desventajas son la iluminación y el vestuario: la luz de color se derrama sobre los bordes (especialmente el pelo), por lo que usarás herramientas de eliminación de derrame de color para neutralizar la contaminación. Algunas buenas introducciones son la documentación de Nuke, Mixing Light y una demostración práctica de Fusion.

2) Segmentación interactiva (CV clásica)

Para imágenes individuales con fondos desordenados, los algoritmos interactivos necesitan algunas pistas del usuario, por ejemplo, un rectángulo suelto o garabatos, y generan una máscara nítida. El método canónico es GrabCut (capítulo de libro), que aprende modelos de color para el primer plano/fondo y utiliza cortes de grafo de forma iterativa para separarlos. Verás ideas similares en la Selección de primer plano de GIMP basada en SIOX (plugin de ImageJ).

3) Matting de imagen (alfa de grano fino)

El Matting resuelve la transparencia fraccional en los límites tenues (pelo, pelaje, humo, vidrio). El matting de forma cerrada clásico toma un trimapa (definitivamente-primer plano/definitivamente-fondo/desconocido) y resuelve un sistema lineal para alfa con una fuerte precisión de borde. El matting de imagen profundo moderno entrena redes neuronales en el conjunto de datos Adobe Composition-1K (documentos de MMEditing), y se evalúa con métricas como SAD, MSE, Gradiente y Conectividad (explicador del benchmark).

4) Recortes de aprendizaje profundo (sin trimapa)

El trabajo de segmentación relacionado también es útil: DeepLabv3+ refina los límites con un codificador-decodificador y convoluciones atrous (PDF); Mask R-CNN proporciona máscaras por instancia (PDF); y SAM (Segment Anything) es un modelo de base controlable por prompts que genera máscaras de cero disparos en imágenes no familiares.


Qué hacen las herramientas populares


Consejos de flujo de trabajo para recortes más limpios

  1. Dispara de forma inteligente. Una buena iluminación y un fuerte contraste entre el sujeto y el fondo ayudan a todos los métodos. Con pantallas verdes/azules, planifica la eliminación del derrame de color (guía).
  2. Empieza con una selección amplia y luego refina los detalles. Ejecuta una selección automática (Seleccionar sujeto, U2-Net, SAM), luego refina los bordes con pinceles o matting (p. ej., de forma cerrada).
  3. Ten en cuenta la semitransparencia. El vidrio, los velos, el desenfoque de movimiento, el pelo alborotado necesitan un alfa real (no solo una máscara dura). Los métodos que también recuperan F/B/α minimizan los halos.
  4. Conoce tu alfa. Recto vs. pre-multiplicado producen un comportamiento de borde diferente; exporta/compón de forma coherente (ver descripción general, Hargreaves).
  5. Elige la salida correcta. Para “sin fondo”, entrega un ráster con un alfa limpio (p. ej., PNG/WebP) o conserva los archivos en capas con máscaras si se esperan más ediciones. La clave es la calidad del alfa que calculaste, arraigada en Porter–Duff.

Calidad y evaluación

El trabajo académico informa de errores de SAD, MSE, Gradiente y Conectividad en Composition-1K. Si estás eligiendo un modelo, busca esas métricas (definiciones de métricas; sección de métricas de Background Matting). Para retratos/vídeo, MODNet y Background Matting V2 son potentes; para imágenes generales de “objetos salientes”, U2-Net es una base sólida; para transparencias difíciles, FBA puede ser más limpio.


Casos extremos comunes (y soluciones)

  • Pelo y pelaje: prefiere el matting (trimapa o matting de retratos como MODNet) e inspecciona sobre un fondo de tablero de ajedrez.
  • Estructuras finas (radios de bicicleta, hilo de pescar): utiliza entradas de alta resolución y un segmentador consciente de los límites como DeepLabv3+ como paso previo al matting.
  • Cosas transparentes (humo, vidrio): necesitas alfa fraccional y, a menudo, estimación del color del primer plano (FBA).
  • Videoconferencias: si puedes capturar una placa limpia, Background Matting V2 parece más natural que las ingenuas opciones de “fondo virtual”.

Dónde aparece esto en el mundo real

  • Comercio electrónico: los mercados (p. ej., Amazon) a menudo requieren un fondo de imagen principal blanco puro; consulta la Guía de imágenes de productos (RGB 255,255,255).
  • Herramientas de diseño: el Eliminador de fondo de Canva y Eliminar fondo de Photoshop agilizan los recortes rápidos.
  • Comodidad en el dispositivo:Levantar sujeto” de iOS/macOS es ideal para compartir de forma casual.

Por qué los recortes a veces parecen falsos (y soluciones)

  • Derrame de color: la luz verde/azul envuelve al sujeto; utiliza controles de eliminación de derrame de color o reemplazo de color específico.
  • Halo/flecos: generalmente una falta de coincidencia en la interpretación alfa (recto vs. pre-multiplicado) o píxeles de borde contaminados por el fondo antiguo; convierte/interpreta correctamente (descripción general, detalles).
  • Desenfoque/grano incorrectos: pega un sujeto nítido en un fondo suave y resaltará; iguala el desenfoque de la lente y el grano después de la composición (ver conceptos básicos de Porter–Duff).

Manual TL;DR

  1. Si controlas la captura: usa croma; ilumina de manera uniforme; planifica la eliminación del derrame de color.
  2. Si es una foto única: prueba Eliminar fondo de Photoshop, el eliminador de fondos de Canva o remove.bg; refina los bordes con pinceles o técnicas de matting para el pelo.
  3. Si necesitas bordes de calidad de producción: usa matting ( de forma cerrada o profundo) y comprueba el alfa en la transparencia; ten en cuenta la interpretación del canal alfa.
  4. Para retratos/vídeo: considera MODNet o Background Matting V2; para la segmentación guiada por clics, SAM es un potente front-end.

¿Qué es el formato PFM?

Formato flotante portable

El formato de archivo Portable FloatMap (PFM) es un formato de imagen menos conocido pero de importancia crítica, especialmente en campos que requieren alta fidelidad y precisión en los datos de imagen. A diferencia de los formatos más comunes como JPEG o PNG que están diseñados para uso general y gráficos web, el formato PFM está diseñado específicamente para almacenar y manejar datos de imagen de alto rango dinámico (HDR). Esto significa que puede representar un rango mucho más amplio de niveles de luminancia que los formatos de imagen tradicionales de 8 bits o incluso de 16 bits. El formato PFM logra esto mediante el uso de números de punto flotante para representar la intensidad de cada píxel, lo que permite un rango casi ilimitado de valores de brillo, desde las sombras más oscuras hasta las luces más brillantes.

Los archivos PFM se caracterizan por su simplicidad y eficiencia en el almacenamiento de datos HDR. Un archivo PFM es esencialmente un archivo binario que consta de una sección de encabezado seguida de datos de píxeles. El encabezado es texto ASCII, lo que lo hace legible para los humanos, y especifica información importante sobre la imagen, como sus dimensiones (ancho y alto) y si los datos de píxeles se almacenan en formato de escala de grises o RGB. Después del encabezado, los datos de píxeles se almacenan en un formato binario, con el valor de cada píxel representado como un número de punto flotante IEEE de 32 bits (para imágenes en escala de grises) o de 96 bits (para imágenes RGB). Esta estructura hace que el formato sea fácil de implementar en software al tiempo que proporciona la precisión necesaria para imágenes HDR.

Un aspecto único del formato PFM es su compatibilidad con el orden de bytes little-endian y big-endian. Esta flexibilidad garantiza que el formato se pueda utilizar en diferentes plataformas informáticas sin problemas de compatibilidad. El orden de bytes se indica en el encabezado mediante el identificador de formato: 'PF' para imágenes RGB y 'Pf' para imágenes en escala de grises. Si el identificador está en mayúsculas, significa que el archivo utiliza el orden de bytes big-endian; si está en minúsculas, el archivo utiliza little-endian. Este mecanismo no solo es elegante sino también crucial para preservar la precisión de los datos de punto flotante cuando los archivos se comparten entre sistemas con diferentes órdenes de bytes.

A pesar de sus ventajas en la representación de imágenes HDR, el formato PFM no se utiliza ampliamente en aplicaciones de consumo o gráficos web debido a los grandes tamaños de archivo que resultan del uso de representación de punto flotante para cada píxel. Además, la mayoría de los dispositivos de visualización y software no están diseñados para manejar el alto rango dinámico y la precisión que proporcionan los archivos PFM. Como resultado, los archivos PFM se utilizan principalmente en campos profesionales como la investigación en gráficos por computadora, la producción de efectos visuales y la visualización científica, donde se requiere la máxima calidad y fidelidad de imagen.

El procesamiento de archivos PFM requiere software especializado que pueda leer y escribir datos de punto flotante con precisión. Debido a la adopción limitada del formato, dicho software es menos común que las herramientas para formatos de imagen más frecuentes. Sin embargo, varias aplicaciones de edición y procesamiento de imágenes de nivel profesional admiten archivos PFM, lo que permite a los usuarios trabajar con contenido HDR. Estas herramientas a menudo brindan funciones no solo para ver y editar, sino también para convertir archivos PFM a formatos más convencionales mientras intentan preservar la mayor parte del rango dinámico posible mediante el mapeo de tonos y otras técnicas.

Uno de los desafíos más importantes al trabajar con archivos PFM es la falta de soporte generalizado para contenido HDR en hardware y software de consumo. Si bien ha habido un aumento gradual en el soporte HDR en los últimos años, con algunas pantallas y televisores más nuevos capaces de mostrar un rango más amplio de niveles de luminancia, el ecosistema aún se está poniendo al día. Esta situación a menudo requiere convertir archivos PFM a formatos que son más ampliamente compatibles, aunque a expensas de perder parte del rango dinámico y la precisión que hacen que el formato PFM sea tan valioso para uso profesional.

Además de su función principal en el almacenamiento de imágenes HDR, el formato PFM también se destaca por su simplicidad, lo que lo convierte en una excelente opción para fines educativos y proyectos experimentales en gráficos por computadora y procesamiento de imágenes. Su estructura sencilla permite a los estudiantes e investigadores comprender y manipular fácilmente los datos HDR sin atascarse en complejas especificaciones de formato de archivo. Esta facilidad de uso, combinada con la precisión y flexibilidad del formato, hace que PFM sea una herramienta invaluable en entornos académicos y de investigación.

Otra característica técnica del formato PFM es su soporte para números infinitos y subnormales, gracias a su uso de la representación de punto flotante IEEE. Esta capacidad es particularmente útil en la visualización científica y ciertos tipos de trabajo de gráficos por computadora, donde se deben representar valores extremos o gradaciones muy finas en los datos. Por ejemplo, en simulaciones de fenómenos físicos o escenas de renderizado con fuentes de luz excepcionalmente brillantes, la capacidad de representar con precisión valores de intensidad muy altos o muy bajos puede ser crucial.

Sin embargo, los beneficios de la precisión de punto flotante del formato PFM vienen con mayores demandas computacionales al procesar estos archivos, especialmente para imágenes grandes. Dado que el valor de cada píxel es un número de punto flotante, las operaciones como el escalado de imágenes, el filtrado o el mapeo de tonos pueden ser más intensivas computacionalmente que con los formatos de imagen tradicionales basados en enteros. Este requisito de más potencia de procesamiento puede ser una limitación en aplicaciones en tiempo real o en hardware con capacidades limitadas. A pesar de esto, para aplicaciones donde la máxima calidad de imagen es primordial, los beneficios superan con creces estos desafíos computacionales.

El formato PFM también incluye disposiciones para especificar el factor de escala y el orden de bytes en su encabezado, lo que aumenta aún más su versatilidad. El factor de escala es un número de punto flotante que permite que el archivo indique el rango de brillo físico representado por el rango numérico de los valores de píxel del archivo. Esta característica es esencial para garantizar que cuando los archivos PFM se utilizan en diferentes proyectos o se comparten entre colaboradores, haya una comprensión clara de cómo los valores de píxel se correlacionan con los valores de luminancia del mundo real.

A pesar de las ventajas técnicas del formato PFM, enfrenta desafíos significativos en una adopción más amplia más allá de los entornos profesionales y académicos especializados. La necesidad de software especializado para procesar archivos PFM, combinada con los grandes tamaños de archivo y las demandas computacionales, significa que su uso sigue siendo limitado en comparación con formatos más ubicuos. Para que el formato PFM gane una aceptación más amplia, sería necesario un cambio significativo tanto en el hardware disponible capaz de mostrar contenido HDR como en el soporte del ecosistema de software para imágenes de alta fidelidad y alto rango dinámico.

De cara al futuro, el futuro del formato PFM y las imágenes HDR, en general, está ligado a los avances en la tecnología de visualización y los algoritmos de procesamiento de imágenes. A medida que las pantallas capaces de presentar un rango más amplio de niveles de luminancia se vuelvan más comunes y los recursos computacionales se vuelvan más accesibles, los obstáculos para utilizar formatos HDR como PFM pueden disminuir. Además, con la investigación en curso sobre algoritmos más eficientes para procesar datos de imágenes de punto flotante, la brecha de rendimiento entre el manejo de archivos PFM y los formatos de imagen tradicionales podría reducirse, lo que facilitaría aún más la adopción de imágenes HDR en una gama más amplia de aplicaciones.

En conclusión, el formato Portable FloatMap (PFM) representa una tecnología crucial en el ámbito de las imágenes de alto rango dinámico, que ofrece una precisión y flexibilidad incomparables para representar una amplia gama de niveles de luminancia. Si bien su complejidad, junto con la necesidad de software y hardware especializados, ha limitado su adopción a contextos profesionales y académicos, las capacidades del formato PFM lo convierten en un activo invaluable donde la fidelidad de la imagen es de suma importancia. A medida que el ecosistema tecnológico continúa evolucionando, existe el potencial de que PFM y el contenido HDR se integren más en las aplicaciones convencionales, enriqueciendo la experiencia visual para una audiencia más amplia.

Formatos de archivo compatibles

AAI.aai

Imagen Dune AAI

AI.ai

Adobe Illustrator CS2

AVIF.avif

Formato de archivo de imagen AV1

AVS.avs

Imagen X AVS

BAYER.bayer

Imagen Bayer en bruto

BMP.bmp

Imagen bitmap de Microsoft Windows

CIN.cin

Archivo de imagen Cineon

CLIP.clip

Máscara de clip de imagen

CMYK.cmyk

Muestras de cian, magenta, amarillo y negro en bruto

CMYKA.cmyka

Muestras de cian, magenta, amarillo, negro y alfa en bruto

CUR.cur

Icono de Microsoft

DCX.dcx

ZSoft IBM PC Paintbrush multipágina

DDS.dds

Superficie DirectDraw de Microsoft

DPX.dpx

Imagen SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Superficie DirectDraw de Microsoft

EPDF.epdf

Formato de documento portátil encapsulado

EPI.epi

Formato de intercambio PostScript encapsulado de Adobe

EPS.eps

PostScript encapsulado de Adobe

EPSF.epsf

PostScript encapsulado de Adobe

EPSI.epsi

Formato de intercambio PostScript encapsulado de Adobe

EPT.ept

PostScript encapsulado con vista previa TIFF

EPT2.ept2

PostScript encapsulado Nivel II con vista previa TIFF

EXR.exr

Imagen de alto rango dinámico (HDR)

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Sistema de Transporte de Imagen Flexible

GIF.gif

Formato de intercambio de gráficos CompuServe

GIF87.gif87

Formato de intercambio de gráficos CompuServe (versión 87a)

GROUP4.group4

CCITT Grupo 4 en bruto

HDR.hdr

Imagen de alto rango dinámico

HRZ.hrz

Televisión de barrido lento

ICO.ico

Icono de Microsoft

ICON.icon

Icono de Microsoft

IPL.ipl

Imagen de ubicación IP2

J2C.j2c

Flujo JPEG-2000

J2K.j2k

Flujo JPEG-2000

JNG.jng

Gráficos JPEG Network

JP2.jp2

Sintaxis de formato de archivo JPEG-2000

JPC.jpc

Flujo JPEG-2000

JPE.jpe

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

JPEG.jpeg

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

JPG.jpg

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

JPM.jpm

Sintaxis de formato de archivo JPEG-2000

JPS.jps

Formato JPS del Grupo Conjunto de Expertos en Fotografía

JPT.jpt

Sintaxis de formato de archivo JPEG-2000

JXL.jxl

Imagen JPEG XL

MAP.map

Base de datos de imágenes sin costuras multiresolución (MrSID)

MAT.mat

Formato de imagen MATLAB nivel 5

PAL.pal

Mapa de pixeles Palm

PALM.palm

Mapa de pixeles Palm

PAM.pam

Formato común de mapa de bits 2-dimensional

PBM.pbm

Formato de mapa de bits portable (blanco y negro)

PCD.pcd

Photo CD

PCDS.pcds

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Formato Palm Database ImageViewer

PDF.pdf

Formato de Documento Portátil

PDFA.pdfa

Formato de Archivo de Documento Portátil

PFM.pfm

Formato flotante portable

PGM.pgm

Formato de mapa de grises portable (escala de grises)

PGX.pgx

Formato sin comprimir JPEG 2000

PICON.picon

Icono personal

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

PNG.png

Gráficos de red portátiles

PNG00.png00

PNG que hereda profundidad de bits, tipo de color de la imagen original

PNG24.png24

RGB opaco o transparente binario de 24 bits (zlib 1.2.11)

PNG32.png32

RGBA opaco o transparente binario de 32 bits

PNG48.png48

RGB opaco o transparente binario de 48 bits

PNG64.png64

RGBA opaco o transparente binario de 64 bits

PNG8.png8

Índice opaco o transparente binario de 8 bits

PNM.pnm

Anymap portable

PPM.ppm

Formato de mapa de bits portable (color)

PS.ps

Archivo PostScript de Adobe

PSB.psb

Formato de documento grande de Adobe

PSD.psd

Mapa de bits Photoshop de Adobe

RGB.rgb

Muestras de rojo, verde y azul en bruto

RGBA.rgba

Muestras de rojo, verde, azul y alfa en bruto

RGBO.rgbo

Muestras de rojo, verde, azul y opacidad en bruto

SIX.six

Formato de gráficos DEC SIXEL

SUN.sun

Formato Rasterfile de Sun

SVG.svg

Gráficos vectoriales escalables

SVGZ.svgz

Gráficos vectoriales escalables comprimidos

TIFF.tiff

Formato de archivo de imagen etiquetado

VDA.vda

Imagen Truevision Targa

VIPS.vips

Imagen VIPS

WBMP.wbmp

Imagen inalámbrica Bitmap (nivel 0)

WEBP.webp

Formato de imagen WebP

YUV.yuv

CCIR 601 4:1:1 o 4:2:2

Preguntas frecuentes

¿Cómo funciona esto?

Este convertidor funciona completamente en tu navegador. Cuando seleccionas un archivo, se lee en la memoria y se convierte al formato seleccionado. Luego puedes descargar el archivo convertido.

¿Cuánto tarda en convertir un archivo?

Las conversiones comienzan al instante, y la mayoría de los archivos se convierten en menos de un segundo. Archivos más grandes pueden tardar más.

¿Qué sucede con mis archivos?

Tus archivos nunca se suben a nuestros servidores. Se convierten en tu navegador, y el archivo convertido se descarga luego. Nosotros nunca vemos tus archivos.

¿Qué tipos de archivo puedo convertir?

Soportamos la conversión entre todos los formatos de imagen, incluyendo JPEG, PNG, GIF, WebP, SVG, BMP, TIFF y más.

¿Cuánto cuesta esto?

Este convertidor es completamente gratis, y siempre será gratis. Debido a que funciona en tu navegador, no tenemos que pagar por servidores, así que no necesitamos cobrarte.

¿Puedo convertir múltiples archivos a la vez?

¡Sí! Puedes convertir tantos archivos como quieras a la vez. Sólo selecciona múltiples archivos cuando los agregues.