बैकग्राउंड हटाना किसी विषय को उसके परिवेश से अलग करता है ताकि आप उसे पारदर्शिता पर रख सकें, दृश्य को बदल सकें, या उसे एक नए डिज़ाइन में संयोजित कर सकें। हुड के तहत आप एक अल्फा मैट का अनुमान लगा रहे हैं - 0 से 1 तक प्रति-पिक्सेल अपारदर्शिता - और फिर अग्रभूमि को किसी और चीज़ पर अल्फा-कंपोज़िटिंग कर रहे हैं। यह पोर्टर-डफ का गणित है और "फ्रिंज" और स्ट्रेट बनाम प्रीमल्टीप्लाइड अल्फा जैसी परिचित कमियों का कारण है। प्रीमल्टीप्लिकेशन और रैखिक रंग पर व्यावहारिक मार्गदर्शन के लिए, माइक्रोसॉफ्ट के विन2डी नोट्स, सोरेन सैंडमैन, और लोमोंट का रैखिक सम्मिश्रण पर लेख देखें।
यदि आप कैप्चर को नियंत्रित कर सकते हैं, तो पृष्ठभूमि को एक ठोस रंग (अक्सर हरा) से पेंट करें और उस रंग को हटा दें। यह तेज़ है, फिल्म और प्रसारण में परीक्षण किया हुआ है, और वीडियो के लिए आदर्श है। ट्रेड-ऑफ प्रकाश और अलमारी हैं: रंगीन प्रकाश किनारों (विशेषकर बालों) पर फैलता है, इसलिए आप संदूषण को बेअसर करने के लिए डीस्पिल टूल का उपयोग करेंगे। अच्छे प्राइमरों में न्यूक के दस्तावेज़, मिक्सिंग लाइट, और एक व्यावहारिक फ्यूजन डेमो शामिल हैं।
गंदी पृष्ठभूमि वाली एकल छवियों के लिए, इंटरैक्टिव एल्गोरिदम को कुछ उपयोगकर्ता संकेतों की आवश्यकता होती है - जैसे, एक ढीला आयत या स्क्रिबल्स - और एक स्पष्ट मास्क बनाते हैं। कैनोनिकल विधि ग्रैबकट (पुस्तक अध्याय) है, जो अग्रभूमि/पृष्ठभूमि के लिए रंग मॉडल सीखता है और उन्हें अलग करने के लिए पुनरावृत्त रूप से ग्राफ कट का उपयोग करता है। आप GIMP के फोरग्राउंड सेलेक्ट में SIOX (ImageJ प्लगइन) पर आधारित समान विचार देखेंगे।
मैटिंग wispy सीमाओं (बाल, फर, धुआं, कांच) पर भिन्नात्मक पारद र्शिता को हल करता है। क्लासिक क्लोज्ड-फॉर्म मैटिंग एक ट्राइमैप (निश्चित रूप से-अग्रभूमि/निश्चित रूप से-पृष्ठभूमि/अज्ञात) लेता है और मजबूत किनारे की सटीकता के साथ अल्फा के लिए एक रैखिक प्रणाली को हल करता है। आधुनिक डीप इमेज मैटिंग एडोब कंपोजिशन-1K डेटासेट (MMEditing डॉक्स) पर तंत्रिका नेटवर्क को प्रशिक्षित करता है, और SAD, MSE, ग्रेडिएंट और कनेक्टिविटी (बेंचमार्क एक्सप्लेनर) जैसे मेट्रिक्स के साथ मूल्यांकन किया जाता है।
संबंधित विभाजन कार्य भी उपयोगी है: DeepLabv3+ एक एन्कोडर-डिकोडर और एट्रस कनवल्शन के साथ सीमाओं को परिष्कृत करता है (PDF); मास्क R-CNN प्रति-उदाहरण मास्क देता है (PDF); और SAM (सेगमेंट एनीथिंग) एक प्रॉम्प्टेबल फाउंडेशन मॉडल है जो अपरिचित छवियों पर शून्य-शॉट मास्क उत्पन्न करता है।
अकादमिक कार्य कंपोजिशन-1K पर SAD, MSE, ग्रेडिएंट, और कनेक्टिविटी त्रुटियों की रिपोर्ट करते हैं। यदि आप एक मॉडल चुन रहे हैं, तो उन मेट्रिक्स को देखें (मेट्रिक परिभाषाएं; बैकग्राउंड मैटिंग मेट्रिक्स सेक्शन)। पोर्ट्रेट/वीडियो के लिए, MODNet और बैकग्राउंड मैटिंग V2 मजबूत हैं; सामान्य "मुख्य वस्तु" छवियों के लिए, U2-Net एक ठोस आधार रेखा है; कठिन पारदर्शिता के लिए, FBA क्लीनर हो सकता है।
JPEG (जॉइंट फोटोग्राफिक एक्सपर्ट्स ग्रुप) इमेज फॉर्मेट, जिसे आमतौर पर JPG के रूप में जाना जाता है, डिजिटल इमेज के लिए लॉसी कम्प्रेशन की एक व्यापक रूप से उपयोग की जाने वाली विधि है, विशेष रूप से डिजिटल फोटोग्राफी द्वारा निर्मित उन इमेज के लिए। कम्प्रेशन की डिग्री को समायोजित किया जा सकता है, जिससे स्टोरेज साइज़ और इमेज क्वालिटी के बीच एक चयन योग्य ट्रेड-ऑफ की अनुमति मिलती है। JPEG आमतौर पर इमेज क्वालिटी में थोड़े से बोधगम्य नुकसान के साथ 10:1 कम्प्रेशन प्राप्त करता है।
JPEG कम्प्रेशन का उपयोग कई इमेज फ़ाइल फॉर्मेट में किया जाता है। JPEG/Exif डिजिटल कैमरों और अन्य फोटोग्राफिक इमेज कैप्चर डिवाइस द्वारा उपयोग किया जाने वाला सबसे आम इमेज फॉर्मेट है; JPEG/JFIF के साथ, यह वर्ल्ड वाइड वेब पर फोटोग्राफिक इमेज को स्टोर करने और ट्रांसमिट करने के लिए सबसे आम फॉर्मेट है। इन फॉर्मेट भिन्नताओं को अक्सर अलग नहीं किया जाता है, और इन्हें केवल JPEG कहा जाता है।
JPEG फॉर्मेट में कई मानक शामिल हैं, जिनमें JPEG/Exif, JPEG/JFIF और JPEG 2000 शामिल हैं, जो एक नया मानक है जो उच्च कम्प्यूटेशनल जटिलता के साथ बेहतर कम्प्रेशन दक्षता प्रदान करता है। JPEG मानक जटिल है, जिसमें विभिन्न भाग और प्रोफाइल हैं, लेकिन सबसे अधिक उपयोग किया जाने वाला JPEG मानक बेसलाइन JPEG है, जिसका उल्लेख अधिकांश लोग 'JPEG' इमेज का उल्लेख करते समय करते हैं।
JPEG कम्प्रेशन एल्गोरिथम अपने मूल में एक असतत कोसाइन ट्रांसफॉर्म (DCT) आधारित कम्प्रेशन तकनीक है। DCT एक फूरियर-संबंधित ट्रांसफॉर्म है जो असतत फूरियर ट्रांसफॉर्म (DFT) के समान है, लेकिन केवल कोसाइन फ ़ंक्शन का उपयोग करता है। DCT का उपयोग इसलिए किया जाता है क्योंकि इसमें स्पेक्ट्रम के निचले आवृत्ति क्षेत्र में अधिकांश सिग्नल को केंद्रित करने का गुण होता है, जो प्राकृतिक इमेज के गुणों के साथ अच्छी तरह से संबंधित होता है।
JPEG कम्प्रेशन प्रक्रिया में कई चरण शामिल हैं। प्रारंभ में, इमेज को उसके मूल रंग स्थान (आमतौर पर RGB) से एक अलग रंग स्थान में परिवर्तित किया जाता है जिसे YCbCr के रूप में जाना जाता है। YCbCr रंग स्थान इमेज को एक ल्यूमिनेंस घटक (Y) में अलग करता है, जो चमक के स्तर का प्रतिनिधित्व करता है, और दो क्रोमिनेंस घटक (Cb और Cr), जो रंग की जानकारी का प्रतिनिधित्व करते हैं। यह पृथक्करण फायदेमंद है क्योंकि मानवीय आँख रंग की तुलना में चमक में भिन्नताओं के प्रति अधिक संवेदनशील होती है, जिससे क्रोमिनेंस घटकों के अधिक आक्रामक कम्प्रेशन की अनुमति मिलती है, जो कथित इमेज क्वालिटी को महत्वपूर्ण रूप से प्रभावित किए बिना होती है।
रंग स्थान रूपांतरण के बाद, इमेज को ब्लॉक में विभाजित किया जाता है, आमतौर पर आकार में 8x8 पिक्सेल। फिर प्रत्येक ब्लॉक को अलग से संसाधित किया जाता है। प्रत्येक ब्लॉक के लिए, DCT लागू किया जाता है, जो स्थानिक डोमेन डेटा को आवृत्ति डोमेन डेटा में बदल देता है। यह चरण महत्वपूर्ण है क्योंकि यह इमेज डेटा को कम्प्रेशन के लिए अधिक उपयुक्त बनाता है, क्योंकि प्राकृतिक इमेज में कम-आवृत्ति वाले घटक होते हैं जो उच्च-आवृत्ति वाले घटकों की तुलना में अधिक महत्वपूर्ण होते हैं।
DCT लागू होने के बाद, परिणामी गुणांक क्वांटिज़्ड होते हैं। क्वांटिज़ेशन इनपुट मानों के एक बड़े सेट को एक छोटे सेट में मैप करने की प्रक्रिया है, जो उन्हें स्टोर करने के लिए आवश्यक बिट्स की संख्या को प्रभावी ढंग से कम करता है। यह JPEG कम्प्रेशन में नुकसान का प्राथमिक स्रोत है। क्वांटिज़ेशन चरण को एक क्वांटिज़ेशन टेबल द्वारा नियंत्रित किया जाता है, जो यह निर्धारित करता है कि प्रत्येक DCT गुणांक पर कितना कम्प्रेशन लागू किया जाता है। क्वांटिज़ेशन टेबल को समायोजित करके, उपयोगकर्ता इमेज क्वालिटी और फ़ाइल साइज़ के बीच ट्रेड-ऑफ कर सकते हैं।
क्वांटिज़ेशन के बाद, गुणांकों को ज़िगज़ैग स्कैनिंग द्वारा रैखिक बनाया जाता है, जो उन्हें बढ़ती आवृत्ति के अनुसार क्रमबद्ध करता है। यह चरण महत्वपूर्ण है क्योंकि यह कम-आवृत्ति वाले गुणांकों को एक साथ समूहित करता है जो महत्वपूर्ण होने की अधिक संभावना रखते हैं, और उच्च-आवृत्ति वाले गुणांक जो क्वांटिज़ेशन के बाद शून्य या शून्य के निकट होने की अधिक संभावना रखते हैं। यह क्रम अगले चरण को सुगम बनाता है, जो एन्ट्रॉपी कोडिंग है।
एन्ट्रॉपी कोडिंग लॉसलेस कम्प्रेशन की एक विधि है जिसे क्वांटिज़्ड DCT गुणांकों पर लागू किया जाता है। JPEG में उपयोग की जाने वाली एन्ट्रॉपी कोडिंग का सबसे सामान्य रूप हफ़मैन कोडिंग है, हालाँकि अंकगणितीय कोडिंग को भी मानक द्वारा समर्थित किया जाता है। हफ़मैन कोडिंग अधिक बार-बार आने वाले तत्वों को छोटे कोड और कम बार-बार आने वाले तत्वों को लंबे कोड असाइन करके काम करता है। चूंकि प्राकृतिक इमेज में क्वांटिज़ेशन के बाद कई शून्य या शून्य के निकट गुणांक होते हैं, विशेष रूप से उच्च-आवृत्ति वाले क्षेत्र में, हफ़मैन कोडिंग संपीड़ित डेटा के आकार को काफी कम कर सकता है।
JPEG कम्प्रेशन प्रक्रिया में अंतिम चरण संपीड़ित डेटा को एक फ़ाइल फॉर्मेट में स्टोर करना है। सबसे आम फॉर्मेट JPEG फ़ाइल इंटरचेंज फॉर्मेट (JFIF) है, जो परिभाषित करता है कि संपीड़ित डेटा और संबद्ध मेटाडेटा का प्रतिनिधित्व कैसे किया जाए, जैसे कि क्वांटिज़ेशन टेबल और हफ़मैन कोड टेबल, एक फ़ाइल में जिसे सॉफ़्टवेयर की एक विस्तृत श्रृंखला द्वारा डिकोड किया जा सकता है। एक अन्य सामान्य फॉर्मेट एक्सचेंजेबल इमेज फ़ाइल फॉर्मेट (Exif) है, जिसका उपयोग डिजिटल कैमरों द्वारा किया जाता है और इसमें कैमरा सेटिंग्स और दृश्य जानकारी जैसे मेटाडेटा शामिल होते हैं।
JPEG फ़ाइलों में मार्कर भी शामिल होते हैं, जो कोड अनुक्रम होते हैं जो फ़ाइल में कुछ मापदंडों या क्रियाओं को परिभाषित करते हैं। ये मार्कर एक इमेज की शुरुआत, एक इमेज के अंत, क्वांटिज़ेशन टेबल को परिभाषित करते हैं, हफ़मैन कोड टेबल को निर्दिष्ट करते हैं, और बहुत कुछ इंगित कर सकते हैं। JPEG इमेज के उचित डिकोडिंग के लिए मार्कर आवश्यक हैं, क्योंकि वे संपीड़ित डेटा से इमेज को फिर से बनाने के लिए आवश्यक जानकारी प्रदान करते हैं।
JPEG की प्रमुख विशेषताओं में से एक प्रगतिशील एन्कोडिंग के लिए इसका समर्थन है। प्रगतिशील JPEG में, इमेज को कई पास में एन्कोड किया जाता है, प्रत्येक इमेज क्वालिटी में सुधार करता है। यह इमेज के निम्न-गुणवत्ता वाले संस्करण को प्रदर्शित करने की अनुमति देता है जबकि फ़ाइल अभी भी डाउनलोड की जा रही है, जो विशेष रूप से वेब इमेज के लिए उपयोगी हो सकता है। प्रगतिशील JPEG फ़ाइलें आमतौर पर बेसलाइन JPEG फ़ाइलों से बड़ी होती हैं, लेकिन लोडिंग के दौरान क्व
यह कनवर्टर पूरी तरह से आपके ब्राउज़र में चलता है। जब आप किसी फ़ाइल का चयन करते हैं, तो उसे मेमोरी में पढ़ा जाता है और चयनित प्रारूप में परिवर्तित किया जाता है। फिर आप परिवर्तित फ़ाइल डाउनलोड कर सकते हैं।
रूपांतरण तुरंत शुरू हो जाते हैं, और अधिकांश फ़ाइलें एक सेकंड के भीतर परिवर्तित हो जाती हैं। बड़ी फ़ाइलों में अधिक समय लग सकता है।
आपकी फाइलें कभी भी हमारे सर्वर पर अपलोड नहीं की जाती हैं। वे आपके ब्राउज़र में परिवर्तित हो जाती हैं, और फिर परिवर्तित फ़ाइल डाउनलोड हो जाती है। हम आपकी फाइलें कभी नहीं देखते हैं।
हम जेपीईजी, पीएनजी, जीआईएफ, वेबपी, एसवीजी, बीएमपी, টিআইএফএফ, और अधिक सहित सभी छवि प्रारूपों के बीच रूपांतरण का समर्थन करते हैं।
यह कनवर्टर पूरी तरह से मुफ्त है, और हमेशा मुफ्त रहेगा। क्योंकि यह आपके ब्राउज़र में चलता है, हमें सर्वर के लिए भुगतान करने की आवश्यकता नहीं है, इसलिए हमें आपसे शुल्क लेने की आवश्यकता नहीं है।
हाँ! आप एक साथ जितनी चाहें उतनी फाइलें परिवर्तित कर सकते हैं। बस उन्हें जोड़ते समय कई फाइलों का चयन करें।