बैकग्राउंड हटाना किसी विषय को उसके परिवेश से अलग करता है ताकि आप उसे पारदर्शिता पर रख सकें, दृश्य को बदल सकें, या उसे एक नए डिज़ाइन में संयोजित कर सकें। हुड के तहत आप एक अल्फा मैट का अनुमान लगा रहे हैं - 0 से 1 तक प्रति-पिक्सेल अपारदर्शिता - और फिर अग्रभूमि को किसी और चीज़ पर अल्फा-कंपोज़िटिंग कर रहे हैं। यह पोर्टर-डफ का गणित है और "फ्रिंज" और स्ट्रेट बनाम प्रीमल्टीप्लाइड अल्फा जैसी परिचित कमियों का कारण है। प्रीमल्टीप्लिकेशन और रैखिक रंग पर व्यावहारिक मार्गदर्शन के लिए, माइक्रोसॉफ्ट के विन2डी नोट्स, सोरेन सैंडमैन, और लोमोंट का रैखिक सम्मिश्रण पर लेख देखें।
यदि आप कैप्चर को नियंत्रित कर सकते हैं, तो पृष्ठभूमि को एक ठोस रंग (अक्सर हरा) से पेंट करें और उस रंग को हटा दें। यह तेज़ है, फिल्म और प्रसारण में परीक्षण किया हुआ है, और वीडियो के लिए आदर्श है। ट्रेड-ऑफ प्रकाश और अलमारी हैं: रंगीन प्रकाश किनारों (विशेषकर बालों) पर फैलता है, इसलिए आप संदूषण को बेअसर करने के लिए डीस्पिल टूल का उपयोग करेंगे। अच्छे प्राइमरों में न्यूक के दस्तावेज़, मिक्सिंग लाइट, और एक व्यावहारिक फ्यूजन डेमो शामिल हैं।
गंदी पृष्ठभूमि वाली एकल छवियों के लिए, इंटरैक्टिव एल्गोरिदम को कुछ उपयोगकर्ता संकेतों की आवश्यकता होती है - जैसे, एक ढीला आयत या स्क्रिबल्स - और एक स्पष्ट मास्क बनाते हैं। कैनोनिकल विधि ग्रैबकट (पुस्तक अध्याय) है, जो अग्रभूमि/पृष्ठभूमि के लिए रंग मॉडल सीखता है और उन्हें अलग करने के लिए पुनरावृत्त रूप से ग्राफ कट का उपयोग करता है। आप GIMP के फोरग्राउंड सेलेक्ट में SIOX (ImageJ प्लगइन) पर आधारित समान विचार देखेंगे।
मैटिंग wispy सीमाओं (बाल, फर, धुआं, कांच) पर भिन्नात्मक पारद र्शिता को हल करता है। क्लासिक क्लोज्ड-फॉर्म मैटिंग एक ट्राइमैप (निश्चित रूप से-अग्रभूमि/निश्चित रूप से-पृष्ठभूमि/अज्ञात) लेता है और मजबूत किनारे की सटीकता के साथ अल्फा के लिए एक रैखिक प्रणाली को हल करता है। आधुनिक डीप इमेज मैटिंग एडोब कंपोजिशन-1K डेटासेट (MMEditing डॉक्स) पर तंत्रिका नेटवर्क को प्रशिक्षित करता है, और SAD, MSE, ग्रेडिएंट और कनेक्टिविटी (बेंचमार्क एक्सप्लेनर) जैसे मेट्रिक्स के साथ मूल्यांकन किया जाता है।
संबंधित विभाजन कार्य भी उपयोगी है: DeepLabv3+ एक एन्कोडर-डिकोडर और एट्रस कनवल्शन के साथ सीमाओं को परिष्कृत करता है (PDF); मास्क R-CNN प्रति-उदाहरण मास्क देता है (PDF); और SAM (सेगमेंट एनीथिंग) एक प्रॉम्प्टेबल फाउंडेशन मॉडल है जो अपरिचित छवियों पर शून्य-शॉट मास्क उत्पन्न करता है।
अकादमिक कार्य कंपोजिशन-1K पर SAD, MSE, ग्रेडिएंट, और कनेक्टिविटी त्रुटियों की रिपोर्ट करते हैं। यदि आप एक मॉडल चुन रहे हैं, तो उन मेट्रिक्स को देखें (मेट्रिक परिभाषाएं; बैकग्राउंड मैटिंग मेट्रिक्स सेक्शन)। पोर्ट्रेट/वीडियो के लिए, MODNet और बैकग्राउंड मैटिंग V2 मजबूत हैं; सामान्य "मुख्य वस्तु" छवियों के लिए, U2-Net एक ठोस आधार रेखा है; कठिन पारदर्शिता के लिए, FBA क्लीनर हो सकता है।
G4 इमेज फॉर्मेट, जिसे ग्रुप 4 कम्प्रेशन के नाम से भी जाना जाता है, एक डिजिटल इमेज कम्प्रेशन स्कीम है जिसका उपयोग आमतौर पर फैक्स ट्रांसमिशन और स्कैनिंग में किया जाता है। यह TIFF (टैग्ड इमेज फाइल फॉर्मेट) परिवार का एक हिस्सा है और इसे विशेष रूप से कुशल ब्लैक-एंड-व्हाइट या मोनोक्रोम इमेज डेटा कम्प्रेशन के लिए डिज़ाइन किया गया है। G4 इमेज फॉर्मेट का प्राथमिक लक्ष्य किसी इमेज के फाइल साइज़ को उसकी क्वालिटी से समझौता किए बिना कम करना है, जो इसे टेक्स्ट डॉक्यूमेंट, इंजीनियरिंग ड्रॉइंग और अन्य मोनोक्रोम इमेज के हाई-रेजोल्यूशन स्कैन के लिए उपयुक्त बनाता है।
G4 इमेज फॉर्मेट को समझने के लिए इसके पूर्ववर्ती, ग्रुप 3 (G3) कम्प्रेशन स्कीम से परिचित होना आवश्यक है। पहले के फैक्स मशीनों में उपयोग किए जाने वाले G3 ने एक-आयामी (1D) रन-लेंथ एन्कोडिंग जैसी तकनीकों को पेश करके मोनोक्रोम इमेज कम्प्रेशन की नींव रखी। हालाँकि, G3 की कम्प्रेशन क्षमता में सीमाएँ थीं, खासकर अधिक जटिल या विस्तृत इमेज के लिए। इन सीमाओं को दूर करने और कम्प्रेशन क्षमताओं में सुधार करने के लिए, G4 फॉर्मेट को दो-आयामी (2D) एन्कोडिंग स्कीम के साथ पेश किया गया, जो कम्प्रेशन क्षमता को बढ़ाता है, विशेष रूप से दोहराए जाने वाले पैटर्न वाली इमेज के लिए।
G4 फॉर्मेट के कम्प्रेशन एल्गोरिथम के पीछे का मूल सिद्धांत दो-आयामी (2D) संशोधित READ (रिलेटिव एलिमेंट एड्रेस डिज़ाइनेट) एन्कोडिंग का उपयोग है। यह दृष्टिकोण रन-लेंथ एन्कोडिंग की मूल अवधारणा पर आधारित है, जहाँ समान रंगीन पिक्सेल का अनुक्रम (आमतौर पर G4 के मामले में काला या सफेद) एक एकल डेटा बिंदु के रूप में संग्रहीत किया जाता है, जो रंग और लगातार पिक्सेल की संख्या को इंगित करता है। 2D कोडिंग स्कीम में, इमेज में प्रत्येक पंक्ति को स्वतंत्र रूप से व्यवहार करने के बजाय, G4 आसन्न पंक्तियों के बीच के अंतर की जाँच करता है। यह विधि पंक्तियों में दोहराए जाने वाले पैटर्न को कुशलतापूर्वक पहचानती है और उन्हें संपीड़ित करती है, जिससे लगातार पैटर्न वाली इमेज के फ़ाइल आकार को काफी कम किया जाता है।
G4 एन्कोडिंग प्रक्रिया में, पिक्सेल की प्रत्येक पंक्ति की तुलना उसके ठीक ऊपर की पंक्ति से की जाती है, जिसे संदर्भ रेखा के रूप में जाना जाता है। एल्गोरिथम पिक्सेल रंग में परिवर्तन (काले से सफेद और इसके विपरीत संक्रमण) की पहचान करता है और पिक्सेल की निरपेक्ष स्थिति के बजाय इन परिवर्तनों के बीच की दूरी को एन्कोड करता है। इन अंतरों को एन्कोड करके, G4 डेटा को कुशलतापूर्वक संपीड़ित करता है, विशेष रूप से उन दस्तावेज़ों में जहाँ कई पंक्तियाँ समान या समान होती हैं। यह सापेक्ष एन्कोडिंग विधि इस तथ्य का लाभ उठाती है कि टेक्स्टुअल और लाइन ड्राइंग सामग्री में अक्सर दोहराए जाने वाले पैटर्न शामिल होते हैं, जिससे G4 स्कैन किए गए दस्तावेज़ों और तकनीकी ड्रॉइंग को संपीड़ित करने के लिए विशेष रूप से उपयुक्त हो जाता है।
G4 कम्प्रेशन एल्गोरिथम की एक उल्लेखनीय विशेषता एन्कोडिंग ओवरहेड में इसका 'न्यूनतमवाद' है। यह अलग-अलग पंक्तियों या खंडों के लिए संपीड़ित डेटा स्ट्रीम के भीतर पारंपरिक मार्कर या हेडर के उपयोग से बचता है। इसके बजाय, G4 रन की लंबाई और संदर्भ और कोडिंग लाइनों के बीच की शिफ्ट का प्रतिनिधित्व करने के लिए कोड के एक कॉम्पैक्ट सेट पर निर्भर करता है। यह रणनीति G4 की उच्च कम्प्रेशन दरों में महत्वपूर्ण योगदान देती है, एन्कोडिंग प्रक्रिया के दौरान पेश किए गए अतिरिक्त डेटा को कम करके, यह सुनिश्चित करती है कि संपीड़ित फ़ाइल यथासंभव छोटी हो।
कम्प्रेशन क्षमता G4 फॉर्मेट की अपील का एक महत्वपूर्ण पहलू है, लेकिन इमेज क्वालिटी पर इसका प्रभाव ध्यान देने योग्य है। अपनी उच्च कम्प्रेशन दरों के बावजूद, G4 दोषरहित डेटा कम्प्रेशन सुनिश्चित करता है। इसका मतलब यह है कि जब एक G4-संपीड़ित इमेज को डीकंप्रेस किया जाता है, तो उसे बिना किसी विवरण या गुणवत्ता की हानि के उसकी मूल स्थिति में बहाल कर दिया जाता है। यह दोषरहित प्रकृति उन अनुप्रयोगों के लिए आवश्यक है जहाँ पुनरुत्पादित इमेज की सटीकता महत्वपूर्ण है, जैसे कानूनी दस्तावेज़, वास्तुकला योजनाएँ और स्कैन किए गए टेक्स्ट।
TIFF विनिर्देश में G4 इमेज फॉर्मेट का एकीकरण इसकी बहुमुखी प्रतिभा और उपयोगिता को बढ़ाता है। TIFF, एक लचीला और व्यापक रूप से समर्थित इमेज फ़ाइल फ़ॉर्मेट होने के कारण, G4 सहित विभिन्न कम्प्रेशन स्कीम को शामिल करने की अनुमति देता है, बिना TIFF द्वारा प्रदान की जाने वाली कार्यक्षमता से समझौता किए, जैसे एक ही फ़ाइल में कई इमेज के लिए समर्थन, मेटाडेटा संग्रहण और विभिन्न प्लेटफ़ॉर्म और डिवाइस पर संगतता। इस एकीकरण का मतलब है कि उपयोगकर्ता TIFF फॉर्मेट की समृद्ध विशेषताओं और व्यापक संगतता को बनाए रखते हुए G4 के कुशल कम्प्रेशन से ला भ उठा सकते हैं।
हालाँकि, G4 इमेज फॉर्मेट का उपयोग कुछ विचारों और सीमाओं को प्रस्तुत करता है जिनके बारे में उपयोगकर्ताओं को पता होना चाहिए। उदाहरण के लिए, G4 कम्प्रेशन की दक्षता इमेज की सामग्री पर अत्यधिक निर्भर है। एक समान रंग या दोहराए जाने वाले पैटर्न वाले बड़े क्षेत्रों वाली इमेज को यादृच्छिक या अत्यधिक विस्तृत सामग्री वाली इमेज की तुलना में अधिक प्रभावी ढंग से संपीड़ित किया जाता है। इस विशेषता का मतलब है कि जबकि G4 टेक्स्ट दस्तावेज़ों और सरल रेखाचित्रों के लिए उत्कृष्ट है, इसकी कम्प्रेशन क्षमता और प्रभावशीलता तस्वीरों या जटिल ग्रेस्केल इमेज के लिए कम हो सकती है।
इसके अलावा, G4 कम्प्रेशन और डीकम्प्रेशन का प्रदर्शन उपलब्ध कम्प्यूटेशनल संसाधनों से प्रभावित होता है। एन्कोडिंग और डिकोडिंग प्रक्रियाओं में शामिल दो-आयामी विश्लेषण को सरल, एक-आयामी योजनाओं की तुलना में अधि क प्रोसेसिंग पावर की आवश्यकता होती है। नतीजतन, सीमित कम्प्यूटेशनल क्षमता वाले डिवाइस, जैसे पुराने फैक्स मशीन या स्कैनर, G4 संपीड़ित इमेज के साथ काम करते समय धीमी प्रोसेसिंग समय का अनुभव कर सकते हैं। इस कम्प्यूटेशनल मांग को कम फ़ाइल आकार और संग्रहण आवश्यकताओं के लाभों के विरुद्ध संतुलित किया जाना चाहिए।
इन विचारों के बावजूद, विभिन्न अनुप्रयोगों में G4 इमेज फॉर्मेट को अपनाना इसके मूल्य को उजागर करता है। दस्तावेज़ संग्रह और डिजिटल पुस्तकालयों के क्षेत्र में, विवरण का त्याग किए बिना फ़ाइल आकार को महत्वपूर्ण रूप से कम करने की G4 की क्षमता
यह कनवर्टर पूरी तरह से आपके ब्राउज़र में चलता है। जब आप किसी फ़ाइल का चयन करते हैं, तो उसे मेमोरी में पढ़ा जाता है और चयनित प्रारूप में परिवर्तित किया जाता है। फिर आप परिवर्तित फ़ाइल डाउनलोड कर सकते हैं।
रूपांतरण तुरंत शुरू हो जाते हैं, और अधिकांश फ़ाइलें एक सेकंड के भीतर परिवर्तित हो जाती हैं। बड़ी फ़ाइलों में अधिक समय लग सकता है।
आपकी फाइलें कभी भी हमारे सर्वर पर अपलोड नहीं की जाती हैं। वे आपके ब्राउज़र में परिवर्तित हो जाती हैं, और फिर परिवर्तित फ़ाइल डाउनलोड हो जाती है। हम आपकी फाइलें कभी नहीं देखते हैं।
हम जेपीईजी, पीएनजी, जीआईएफ, वेबपी, एसवीजी, बीएमपी, টিআইএফএফ, और अधिक सहित सभी छवि प्रारूपों के बीच रूपांतरण का समर्थन करते हैं।
यह कनवर्टर पूरी तरह से मुफ्त है, और हमेशा मुफ्त रहेगा। क्योंकि यह आपके ब्राउज़र में चलता है, हमें सर्वर के लिए भुगतान करने की आवश्यकता नहीं है, इसलिए हमें आपसे शुल्क लेने की आवश्यकता नहीं है।
हाँ! आप एक साथ जितनी चाहें उतनी फाइलें परिवर्तित कर सकते हैं। बस उन्हें जोड़ते समय कई फाइलों का चयन करें।