Ver metadatos EXIF para cualquier imagen J2C

Ilimitadas imágenes. Tamaño de archivo hasta 2,5 GB. Gratis, para siempre.

Privado y seguro

Todo sucede en tu navegador. Tus archivos nunca tocan nuestros servidores.

Ultrarrápido

Sin subidas, sin esperas. Convierte en el momento en que sueltas un archivo.

Realmente gratis

No se requiere cuenta. Sin costos ocultos. Sin trucos de tamaño de archivo.

EXIF (Exchangeable Image File Format) es un bloque de metadatos de captura que cámaras y teléfonos incrustan en los archivos de imagen, como la exposición, el objetivo, las marcas de tiempo e incluso el GPS. Utiliza un sistema de etiquetas de estilo TIFF empaquetado en formatos como JPEG y TIFF. Es esencial para la búsqueda, clasificación y automatización en bibliotecas de fotos, pero su uso descuidado puede provocar fugas de datos no deseadas (ExifTool y Exiv2 facilitan su inspección).

A bajo nivel, EXIF reutiliza la estructura del Directorio de Archivos de Imagen (IFD) del formato TIFF y, en JPEG, reside dentro del marcador APP1 (0xFFE1), anidando eficazmente un pequeño archivo TIFF dentro de un contenedor JPEG (descripción general de JFIF; portal de especificaciones de CIPA). La especificación oficial —CIPA DC-008 (EXIF), actualmente en la versión 3.x— documenta el diseño del IFD, los tipos de etiquetas y las restricciones (CIPA DC-008; resumen de la especificación). EXIF define un sub-IFD de GPS dedicado (etiqueta 0x8825) y un IFD de interoperabilidad (0xA005) (tablas de etiquetas Exif).

Los detalles de implementación son importantes. Los archivos JPEG típicos comienzan con un segmento JFIF APP0, seguido de EXIF en APP1. Los lectores más antiguos esperan JFIF primero, mientras que las bibliotecas modernas analizan ambos sin problemas (notas del segmento APP). En la práctica, los analizadores a veces asumen un orden o límites de tamaño para APP que la especificación no requiere, por lo que los desarrolladores de herramientas documentan comportamientos específicos y casos límite (guía de metadatos de Exiv2; documentación de ExifTool).

EXIF no se limita a JPEG/TIFF. El ecosistema PNG estandarizó el chunk eXIf para transportar datos EXIF en archivos PNG (el soporte está creciendo y el orden de los chunks en relación con IDAT puede ser importante en algunas implementaciones). WebP, un formato basado en RIFF, acomoda EXIF, XMP e ICC en chunks dedicados (contenedor WebP RIFF; libwebp). En las plataformas de Apple, Image I/O conserva los datos EXIF al convertir a HEIC/HEIF, junto con datos XMP e información del fabricante (kCGImagePropertyExifDictionary).

Si alguna vez te has preguntado cómo las aplicaciones infieren la configuración de la cámara, el mapa de etiquetas EXIF es la respuesta: Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode, y más residen en los sub-IFD primarios y EXIF (etiquetas Exif; etiquetas Exiv2). Apple los expone a través de constantes de Image I/O como ExifFNumber y GPSDictionary. En Android, AndroidX ExifInterface lee y escribe datos EXIF en JPEG, PNG, WebP y HEIF.

Orientación, tiempo y otros problemas

La orientación merece una mención especial. La mayoría de los dispositivos almacenan los píxeles "tal como se tomaron" y registran una etiqueta que indica a los visores cómo rotarlos en la pantalla. Esa es la etiqueta 274 (Orientation) con valores como 1 (normal), 6 (90° en el sentido de las agujas del reloj), 3 (180°), 8 (270°). No respetar o actualizar incorrectamente esta etiqueta conduce a fotos giradas, discrepancias en las miniaturas y errores de aprendizaje automático en las etapas posteriores del procesamiento (etiqueta de orientación;guía práctica). En los procesos de tratamiento de imágenes, a menudo se aplica la normalización, rotando físicamente los píxeles y estableciendo Orientation=1(ExifTool).

La gestión del tiempo es más complicada de lo que parece. Las etiquetas históricas como DateTimeOriginal carecen de zona horaria, lo que hace que las tomas transfronterizas sean ambiguas. Las etiquetas más nuevas agregan información de zona horaria — por ejemplo, OffsetTimeOriginal — para que el software pueda registrar DateTimeOriginal más un desplazamiento UTC (por ejemplo, -07:00) para un ordenamiento y geocorrección precisos (etiquetas OffsetTime*;descripción general de etiquetas).

EXIF frente a IPTC frente a XMP

EXIF coexiste, y a veces se superpone, con Metadatos de fotos IPTC (títulos, creadores, derechos, temas) y XMP, el marco de trabajo basado en RDF de Adobe estandarizado como ISO 16684-1. En la práctica, un software correctamente implementado reconcilia los datos EXIF creados por la cámara con los datos IPTC/XMP introducidos por el usuario sin descartar ninguno de los dos (guía de IPTC;LoC sobre XMP;LoC sobre EXIF).

Privacidad y seguridad

Las cuestiones de privacidad hacen que EXIF sea un tema controvertido. Las geoetiquetas y los números de serie de los dispositivos han revelado ubicaciones sensibles más de una vez; un ejemplo emblemático es la foto de Vice de 2012 de John McAfee, donde las coordenadas GPS de EXIF supuestamente revelaron su paradero (Wired;The Guardian). Muchas plataformas sociales eliminan la mayoría de los datos EXIF al subirlos, pero las implementaciones varían y cambian con el tiempo. Es recomendable verificarlo descargando sus propias publicaciones e inspeccionándolas con una herramienta adecuada (ayuda de medios de Twitter;ayuda de Facebook;ayuda de Instagram).

Los investigadores de seguridad también vigilan de cerca los analizadores EXIF. Las vulnerabilidades en bibliotecas ampliamente utilizadas (por ejemplo, libexif) han incluido desbordamientos de búfer y lecturas fuera de los límites del búfer, provocadas por etiquetas mal formadas. Estas son fáciles de crear porque EXIF es un archivo binario estructurado en una ubicación predecible (avisos;búsqueda en NVD). Es importante mantener actualizadas las bibliotecas de metadatos y procesar las imágenes en un entorno aislado (sandbox) si provienen de fuentes no confiables.

Consejos prácticos

  • Gestione la información de ubicación de forma consciente: deshabilite el geoetiquetado de la cámara cuando sea apropiado o elimine los datos GPS al exportar. Conserve un original privado si necesita los datos más tarde (ExifTool;Exiv2 CLI).
  • Normalice la orientación y las marcas de tiempo en los procesos de tratamiento, idealmente escribiendo la rotación física y eliminando las etiquetas ambiguas (o agregando OffsetTime*). (Orientación;OffsetTime*).
  • Conserve los metadatos descriptivos (créditos/derechos) mapeando EXIF↔IPTC↔XMP de acuerdo con la guía actual de IPTC y prefiera XMP para campos ricos y extensibles.
  • Para PNG/WebP/HEIF, verifique que sus bibliotecas realmente lean y escriban los datos en las ubicaciones modernas de EXIF/XMP; no asuma la paridad con JPEG (PNG eXIf;contenedor WebP;Image I/O).
  • Mantenga las dependencias actualizadas, ya que los metadatos son un objetivo frecuente de ataques a los analizadores (avisos de libexif).

Usado de forma consciente, EXIF es un elemento clave que impulsa los catálogos de fotos, los flujos de trabajo de derechos y las canalizaciones de visión por computadora. Usado ingenuamente, se convierte en una huella digital que quizás no desee compartir. La buena noticia: el ecosistema (especificaciones, API del sistema operativo y herramientas) le da el control que necesita (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).

Lecturas adicionales y referencias

Preguntas Frecuentes

¿Qué son los datos EXIF?

Los datos EXIF (Exchangeable Image File Format) son un conjunto de metadatos sobre una foto, como la configuración de la cámara, la fecha y hora de la toma y, si el GPS está activado, también la ubicación.

¿Cómo puedo ver los datos EXIF?

La mayoría de los visores y editores de imágenes (p. ej., Adobe Photoshop, Visor de fotos de Windows) permiten ver los datos EXIF. Normalmente, basta con abrir el panel de propiedades o información del archivo.

¿Se pueden editar los datos EXIF?

Sí, los datos EXIF se pueden editar con software especializado como Adobe Photoshop, Lightroom o herramientas en línea fáciles de usar, que permiten modificar o eliminar campos de metadatos específicos.

¿Representan los datos EXIF un riesgo para la privacidad?

Sí. Si el GPS está activado, los datos de ubicación almacenados en los metadatos EXIF pueden revelar información geográfica sensible. Por lo tanto, se recomienda eliminar o anonimizar estos datos antes de compartir fotos.

¿Cómo puedo eliminar los datos EXIF?

Muchos programas permiten eliminar los datos EXIF. Este proceso se conoce a menudo como 'eliminación' de metadatos. También existen herramientas en línea que ofrecen esta funcionalidad.

¿Conservan los datos EXIF las redes sociales?

La mayoría de las plataformas de redes sociales, como Facebook, Instagram y Twitter, eliminan automáticamente los datos EXIF de las imágenes para proteger la privacidad de los usuarios.

¿Qué tipo de información proporcionan los datos EXIF?

Los datos EXIF pueden incluir, entre otros, el modelo de la cámara, la fecha y hora de la toma, la distancia focal, el tiempo de exposición, la apertura, la configuración ISO, el balance de blancos y la ubicación GPS.

¿Por qué son útiles los datos EXIF para los fotógrafos?

Para los fotógrafos, los datos EXIF son una guía valiosa para comprender la configuración exacta utilizada en una foto. Esta información ayuda a mejorar la técnica y a replicar condiciones similares en el futuro.

¿Todas las imágenes contienen datos EXIF?

No, solo las imágenes tomadas con dispositivos que admiten metadatos EXIF, como cámaras digitales y teléfonos inteligentes, contendrán estos datos.

¿Existe un formato estándar para los datos EXIF?

Sí, los datos EXIF siguen el estándar establecido por la Japan Electronic Industries Development Association (JEIDA). Sin embargo, algunos fabricantes pueden incluir información adicional y propietaria.

¿Qué es el formato J2C?

Flujo JPEG-2000

El formato de imagen J2C, también conocido como flujo de código JPEG 2000, es parte del conjunto de estándares JPEG 2000. JPEG 2000 en sí es un estándar de compresión de imagen y un sistema de codificación creado por el comité Joint Photographic Experts Group con la intención de reemplazar el estándar JPEG original. El estándar JPEG 2000 se estableció con el objetivo de proporcionar un nuevo sistema de codificación de imágenes con alta flexibilidad y un rendimiento mejorado con respecto a JPEG. Fue diseñado para abordar algunas limitaciones del formato JPEG, como el bajo rendimiento en bajas velocidades de bits y la falta de escalabilidad.

JPEG 2000 utiliza la transformación de ondículas en lugar de la transformada discreta del coseno (DCT) utilizada en el estándar JPEG original. La transformación de ondículas permite un mayor grado de escalabilidad y la capacidad de realizar compresión sin pérdidas, lo que significa que la imagen original se puede reconstruir perfectamente a partir de los datos comprimidos. Esta es una ventaja significativa sobre la compresión con pérdida del JPEG original, que pierde permanentemente cierta información de la imagen durante el proceso de compresión.

El formato de archivo J2C se refiere específicamente al flujo de código de JPEG 2000. Este flujo de código son los datos de imagen codificados reales, que se pueden incrustar en varios formatos de contenedor como JP2 (formato de archivo JPEG 2000 Parte 1), JPX (JPEG 2000 Parte 2, formato de archivo extendido) y MJ2 (formato de archivo Motion JPEG 2000 para video). El formato J2C es esencialmente los datos de imagen codificados sin procesar sin ningún metadato o estructura adicional que pueda proporcionar un formato de contenedor.

Una de las características clave del formato J2C es su compatibilidad con la compresión con y sin pérdida dentro del mismo archivo. Esto se logra mediante el uso de una transformada de ondícula reversible para la compresión sin pérdida y una transformada de ondícula irreversible para la compresión con pérdida. La elección entre compresión con y sin pérdida se puede realizar por mosaico dentro de la imagen, lo que permite una combinación de regiones de alta y baja calidad según la importancia del contenido.

El formato J2C también es altamente escalable y admite una función conocida como "decodificación progresiva". Esto significa que primero se puede decodificar y mostrar una versión de baja resolución de la imagen, seguida de capas sucesivas de mayor resolución a medida que se reciben o procesan más datos de la imagen. Esto es particularmente útil para aplicaciones de red donde el ancho de banda puede ser limitado, ya que permite una vista previa rápida de la imagen mientras aún se descarga la imagen completa de alta resolución.

Otro aspecto importante del formato J2C es su compatibilidad con regiones de interés (ROI). Con la codificación ROI, ciertas partes de la imagen se pueden codificar con una calidad más alta que el resto de la imagen. Esto es útil cuando ciertas áreas de la imagen son más importantes y deben conservarse con mayor fidelidad, como rostros en un retrato o texto en un documento.

El formato J2C también incluye funciones sofisticadas de resistencia a errores, que lo hacen más robusto a la pérdida de datos durante la transmisión. Esto se logra mediante el uso de códigos de corrección de errores y la estructuración del flujo de código de una manera que permita la recuperación de paquetes perdidos. Esto hace que J2C sea una buena opción para transmitir imágenes a través de redes poco confiables o almacenar imágenes de una manera que minimice el impacto de la posible corrupción de datos.

El manejo del espacio de color en J2C también es más avanzado que en el JPEG original. El formato admite una amplia gama de espacios de color, incluidos escala de grises, RGB, YCbCr y otros. También permite que se utilicen diferentes espacios de color dentro de diferentes mosaicos de la misma imagen, lo que proporciona flexibilidad adicional en la forma en que se codifican y representan las imágenes.

La eficiencia de compresión del formato J2C es otra de sus fortalezas. Al utilizar la transformación de ondículas y técnicas avanzadas de codificación de entropía como la codificación aritmética, J2C puede lograr relaciones de compresión más altas que el JPEG original, especialmente a velocidades de bits más bajas. Esto lo convierte en una opción atractiva para aplicaciones donde el espacio de almacenamiento o el ancho de banda son escasos, como en dispositivos móviles o aplicaciones web.

A pesar de sus muchas ventajas, el formato J2C no ha tenido una adopción generalizada en comparación con el formato JPEG original. Esto se debe en parte a la mayor complejidad del estándar JPEG 2000, que requiere más recursos computacionales para codificar y decodificar imágenes. Además, el formato JPEG original está profundamente arraigado en muchos sistemas y tiene un vasto ecosistema de soporte de software y hardware, lo que dificulta que un nuevo estándar gane terreno.

Sin embargo, en ciertos campos especializados, el formato J2C se ha convertido en la opción preferida debido a sus características específicas. Por ejemplo, en imágenes médicas, la capacidad de realizar compresión sin pérdidas y el soporte para imágenes de alto rango dinámico y alta profundidad de bits hacen de J2C un formato ideal. De manera similar, en el cine digital y el archivo de video, la alta calidad del formato a altas relaciones de compresión y sus características de escalabilidad son muy valoradas.

El proceso de codificación de una imagen J2C implica varios pasos. Primero, la imagen se divide en mosaicos, que se pueden procesar de forma independiente. Esta división en mosaicos permite el procesamiento paralelo y puede mejorar la eficiencia de los procesos de codificación y decodificación. Luego, cada mosaico se transforma utilizando una transformada de ondícula reversible o irreversible, según se desee una compresión con o sin pérdida.

Después de la transformación de ondículas, los coeficientes se cuantifican, lo que implica reducir la precisión de los coeficientes de ondículas. En la compresión sin pérdida, este paso se omite, ya que la cuantificación introduciría errores. Los coeficientes cuantificados se codifican por entropía mediante codificación aritmética, lo que reduce el tamaño de los datos aprovechando las propiedades estadísticas del contenido de la imagen.

El paso final en el proceso de codificación es el ensamblaje del flujo de código. Los datos codificados por entropía para cada mosaico se combinan con información de encabezado que describe la imagen y cómo se codificó. Esto incluye información sobre el tamaño de la imagen, el número de mosaicos, la transformada de ondículas utilizada, los parámetros de cuantificación y cualquier otro dato relevante. El flujo de código resultante se puede almacenar en un archivo J2C o incrustar en un formato de contenedor.

Decodificar una imagen J2C implica esencialmente revertir el proceso de codificación. El flujo de código se analiza para extraer la información del encabezado y los datos codificados por entropía para cada mosaico. Luego, los datos codificados por entropía se decodifican para recuperar los coeficientes de ondículas cuantificados. Si la imagen se comprimió mediante compresión con pérdida, los coeficientes se des-cuantifican para aproximar sus valores originales. La transformada de ondícula inversa se aplica para reconstruir la imagen a partir de los coeficientes de ondículas, y los mosaicos se unen para formar la imagen final.

En conclusión, el formato de imagen J2C es un sistema de codificación de imágenes potente y flexible que ofrece varias ventajas sobre el formato JPEG original, incluida una mejor eficiencia de compresión, escalabilidad y la capacidad de realizar compresión sin pérdidas. Si bien no ha alcanzado el mismo nivel de ubicuidad que JPEG, es muy adecuado para aplicaciones que requieren imágenes de alta calidad o tienen requisitos técnicos específicos. A medida que la tecnología continúa avanzando y crece la necesidad de sistemas de codificación de imágenes más sofisticados, el formato J2C puede ver una mayor adopción en una variedad de campos.

Formatos de archivo compatibles

AAI.aai

Imagen Dune AAI

AI.ai

Adobe Illustrator CS2

AVIF.avif

Formato de archivo de imagen AV1

BAYER.bayer

Imagen Bayer en bruto

BMP.bmp

Imagen bitmap de Microsoft Windows

CIN.cin

Archivo de imagen Cineon

CLIP.clip

Máscara de clip de imagen

CMYK.cmyk

Muestras de cian, magenta, amarillo y negro en bruto

CUR.cur

Icono de Microsoft

DCX.dcx

ZSoft IBM PC Paintbrush multipágina

DDS.dds

Superficie DirectDraw de Microsoft

DPX.dpx

Imagen SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Superficie DirectDraw de Microsoft

EPDF.epdf

Formato de documento portátil encapsulado

EPI.epi

Formato de intercambio PostScript encapsulado de Adobe

EPS.eps

PostScript encapsulado de Adobe

EPSF.epsf

PostScript encapsulado de Adobe

EPSI.epsi

Formato de intercambio PostScript encapsulado de Adobe

EPT.ept

PostScript encapsulado con vista previa TIFF

EPT2.ept2

PostScript encapsulado Nivel II con vista previa TIFF

EXR.exr

Imagen de alto rango dinámico (HDR)

FF.ff

Farbfeld

FITS.fits

Sistema de Transporte de Imagen Flexible

GIF.gif

Formato de intercambio de gráficos CompuServe

HDR.hdr

Imagen de alto rango dinámico

HEIC.heic

Contenedor de imagen de alta eficiencia

HRZ.hrz

Televisión de barrido lento

ICO.ico

Icono de Microsoft

ICON.icon

Icono de Microsoft

J2C.j2c

Flujo JPEG-2000

J2K.j2k

Flujo JPEG-2000

JNG.jng

Gráficos JPEG Network

JP2.jp2

Sintaxis de formato de archivo JPEG-2000

JPE.jpe

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

JPEG.jpeg

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

JPG.jpg

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

JPM.jpm

Sintaxis de formato de archivo JPEG-2000

JPS.jps

Formato JPS del Grupo Conjunto de Expertos en Fotografía

JPT.jpt

Sintaxis de formato de archivo JPEG-2000

JXL.jxl

Imagen JPEG XL

MAP.map

Base de datos de imágenes sin costuras multiresolución (MrSID)

MAT.mat

Formato de imagen MATLAB nivel 5

PAL.pal

Mapa de pixeles Palm

PALM.palm

Mapa de pixeles Palm

PAM.pam

Formato común de mapa de bits 2-dimensional

PBM.pbm

Formato de mapa de bits portable (blanco y negro)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Formato Palm Database ImageViewer

PDF.pdf

Formato de Documento Portátil

PDFA.pdfa

Formato de Archivo de Documento Portátil

PFM.pfm

Formato flotante portable

PGM.pgm

Formato de mapa de grises portable (escala de grises)

PGX.pgx

Formato sin comprimir JPEG 2000

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

PNG.png

Gráficos de red portátiles

PNG00.png00

PNG que hereda profundidad de bits, tipo de color de la imagen original

PNG24.png24

RGB opaco o transparente binario de 24 bits (zlib 1.2.11)

PNG32.png32

RGBA opaco o transparente binario de 32 bits

PNG48.png48

RGB opaco o transparente binario de 48 bits

PNG64.png64

RGBA opaco o transparente binario de 64 bits

PNG8.png8

Índice opaco o transparente binario de 8 bits

PNM.pnm

Anymap portable

PPM.ppm

Formato de mapa de bits portable (color)

PS.ps

Archivo PostScript de Adobe

PSB.psb

Formato de documento grande de Adobe

PSD.psd

Mapa de bits Photoshop de Adobe

RGB.rgb

Muestras de rojo, verde y azul en bruto

RGBA.rgba

Muestras de rojo, verde, azul y alfa en bruto

RGBO.rgbo

Muestras de rojo, verde, azul y opacidad en bruto

SIX.six

Formato de gráficos DEC SIXEL

SUN.sun

Formato Rasterfile de Sun

SVG.svg

Gráficos vectoriales escalables

TIFF.tiff

Formato de archivo de imagen etiquetado

VDA.vda

Imagen Truevision Targa

VIPS.vips

Imagen VIPS

WBMP.wbmp

Imagen inalámbrica Bitmap (nivel 0)

WEBP.webp

Formato de imagen WebP

YUV.yuv

CCIR 601 4:1:1 o 4:2:2

Preguntas frecuentes

¿Cómo funciona esto?

Este convertidor funciona completamente en tu navegador. Cuando seleccionas un archivo, se lee en la memoria y se convierte al formato seleccionado. Luego puedes descargar el archivo convertido.

¿Cuánto tarda en convertir un archivo?

Las conversiones comienzan al instante, y la mayoría de los archivos se convierten en menos de un segundo. Archivos más grandes pueden tardar más.

¿Qué sucede con mis archivos?

Tus archivos nunca se suben a nuestros servidores. Se convierten en tu navegador, y el archivo convertido se descarga luego. Nosotros nunca vemos tus archivos.

¿Qué tipos de archivo puedo convertir?

Soportamos la conversión entre todos los formatos de imagen, incluyendo JPEG, PNG, GIF, WebP, SVG, BMP, TIFF y más.

¿Cuánto cuesta esto?

Este convertidor es completamente gratis, y siempre será gratis. Debido a que funciona en tu navegador, no tenemos que pagar por servidores, así que no necesitamos cobrarte.

¿Puedo convertir múltiples archivos a la vez?

¡Sí! Puedes convertir tantos archivos como quieras a la vez. Sólo selecciona múltiples archivos cuando los agregues.