Konvertiere JPEG zu JXL
Ziehen und ablegen oder klicken, um auszuwählen
Privat und sicher
Alles passiert in Ihrem Browser. Ihre Dateien berühren niemals unsere Server.
Blitzschnell
Kein Hochladen, kein Warten. Konvertieren Sie, sobald Sie eine Datei ablegen.
Wirklich kostenlos
Kein Konto erforderlich. Keine versteckten Kosten. Keine Tricks bei der Dateigröße.
Was ist das JPEG Format?
Joint Photographic Experts Group JFIF-Format
JPEG, was für Joint Photographic Experts Group steht, ist eine häufig verwendete Methode der verlustbehafteten Kompression für digitale Bilder, insbesondere für Bilder, die mit digitaler Fotografie aufgenommen wurden. Der Kompressionsgrad kann angepasst werden, um einen wählbaren Kompromiss zwischen Dateigröße und Bildqualität zu erreichen. JPEG erreicht in der Regel eine Kompression von 10:1 bei nur geringem wahrnehmbarem Qualitätsverlust.
Der JPEG-Kompressionsalgorithmus ist der Kern des JPEG-Standards. Der Prozess beginnt damit, dass ein digitales Bild von seinem üblichen RGB-Farbraum in einen anderen Farbraum namens YCbCr konvertiert wird. Der YCbCr-Farbraum teilt das Bild in Luminanz (Y), welche die Helligkeitsstufen darstellt, und Chrominanz (Cb und Cr), welche die Farbinformationen darstellen. Diese Trennung ist vorteilhaft, da das menschliche Auge empfindlicher auf Helligkeitsunterschiede als auf Farbunterschiede reagiert, was es der Kompression ermöglicht, Farbinformationen stärker zu komprimieren als Luminanz.
Nachdem das Bild im YCbCr-Farbraum vorliegt, ist der nächste Schritt in der JPEG-Kompression das Downsampling der Chrominanzkanäle. Downsampling reduziert die Auflösung der Chrominanzinformationen, was die wahrgenommene Bildqualität in der Regel nicht wesentlich beeinträchtigt, da das menschliche Auge weniger empfindlich auf Farbdetails ist. Dieser Schritt ist optional und kann je nach gewünschtem Gleichgewicht zwischen Bildqualität und Dateigröße angepasst werden.
Nach dem Downsampling wird das Bild in Blöcke, normalerweise mit einer Größe von 8x8 Pixeln, unterteilt. Jeder Block wird dann separat verarbeitet. Der erste Schritt bei der Verarbeitung jedes Blocks ist die Anwendung der Diskreten Kosinustransformation (DCT). Die DCT ist eine mathematische Operation, die die Daten aus dem räumlichen Bereich (die Pixelwerte) in den Frequenzbereich transformiert. Das Ergebnis ist eine Matrix von Frequenzkoeffizienten, die die Bilddaten des Blocks in Bezug auf seine räumlichen Frequenzkomponenten darstellen.
Die aus der DCT resultierenden Frequenzkoeffizienten werden dann quantisiert. Quantisierung ist der Prozess, bei dem eine große Menge an Eingangswerten auf eine kleinere Menge abgebildet wird – im Falle von JPEG bedeutet dies, die Genauigkeit der Frequenzkoeffizienten zu reduzieren. Hier tritt der verlustbehaftete Teil der Kompression auf, da einige Bildinformationen verworfen werden. Der Quantisierungsschritt wird durch eine Quantisierungstabelle gesteuert, die bestimmt, wie viel Kompression auf jede Frequenzkomponente angewendet wird. Die Quantisierungstabellen können angepasst werden, um eine höhere Bildqualität (weniger Kompression) oder eine kleinere Dateigröße (mehr Kompression) zu begünstigen.
Nach der Quantisierung werden die Koeffizienten in einer Zick-Zack-Anordnung angeordnet, beginnend in der oberen linken Ecke und einem Muster folgend, das niedrigere Frequenzkomponenten gegenüber höheren Frequenzkomponenten priorisiert. Dies liegt daran, dass niedrigere Frequenzkomponenten (die die gleichmäßigeren Teile des Bildes darstellen) für das Gesamterscheinungsbild wichtiger sind als höhere Frequenzkomponenten (die die feineren Details und Kanten darstellen).
Der nächste Schritt im JPEG-Kompressionsprozess ist die Entropiekodierung, die eine Methode der verlustfreien Kompression ist. Die am häufigsten in JPEG verwendete Form der Entropiekodierung ist die Huffman-Kodierung, wobei auch die arithmetische Kodierung eine Option ist. Die Huffman-Kodierung funktioniert, indem sie kürzere Codes für häufigere Vorkommen und längere Codes für seltener vorkommende Werte zuweist. Da die Zick-Zack-Anordnung dazu neigt, ähnliche Frequenzkoeffizienten zusammenzufassen, erhöht sie die Effizienz der Huffman-Kodierung.
Sobald die Entropiekodierung abgeschlossen ist, wird die komprimierte Daten in ein Dateiformat gespeichert, das dem JPEG-Standard entspricht. Dieses Dateiformat enthält einen Kopf mit Informationen zum Bild, wie z.B. seine Abmessungen und die verwendeten Quantisierungstabellen, gefolgt von den Huffman-kodierten Bilddaten. Das Dateiformat unterstützt auch die Aufnahme von Metadaten wie EXIF-Daten, die Informationen über die Kameraeinstellungen, das Aufnahmedatum und -uhrzeit und andere relevante Details enthalten können.
Wenn ein JPEG-Bild geöffnet wird, kehrt der Dekompressionsvorgang die Kompressionsschritte im Wesentlichen um. Die Huffman-kodierten Daten werden dekodiert, die quantisierten Frequenzkoeffizienten werden unter Verwendung derselben Quantisierungstabellen, die auch bei der Kompression verwendet wurden, re-quantisiert, und die inverse Diskrete Kosinustransformation (IDCT) wird auf jeden Block angewendet, um die Frequenzbereichsdaten wieder in räumliche Pixelwerte umzuwandeln.
Der Re-Quantisierungs- und IDCT-Prozess führen aufgrund der verlustbehafteten Natur der Kompression zu einigen Fehlern, weshalb JPEG nicht ideal für Bilder ist, die mehrmals bearbeitet und erneut gespeichert werden. Jedes Mal, wenn ein JPEG-Bild gespeichert wird, durchläuft es den Kompressionsprozess erneut, und es gehen weitere Bildinformationen verloren. Dies kann zu einer deutlichen Verschlechterung der Bildqualität im Laufe der Zeit führen, ein Phänomen, das als 'Generationsverlust' bezeichnet wird.
Trotz der verlustbehafteten Natur der JPEG-Kompression bleibt es ein beliebtes Bildformat aufgrund seiner Flexibilität und Effizienz. JPEG-Bilder können sehr klein in der Dateigröße sein, was sie ideal für die Verwendung im Web macht, wo Bandbreite und Ladezeiten wichtige Überlegungen sind. Darüber hinaus enthält der JPEG-Standard einen progressiven Modus, mit dem ein Bild so codiert werden kann, dass es in mehreren Durchgängen decodiert werden kann, wobei sich die Auflösung des Bildes mit jedem Durchgang verbessert. Dies ist insbesondere für Webbilder nützlich, da es die schnelle Anzeige einer niederqualitativeren Version des Bildes ermöglicht, wobei die Qualität zunimmt, je mehr Daten heruntergeladen werden.
JPEG hat auch einige Einschränkungen und ist nicht immer die beste Wahl für alle Arten von Bildern. Zum Beispiel ist es nicht gut geeignet für Bilder mit scharfen Kanten oder hochkontrasten Text, da die Kompression in diesen Bereichen sichtbare Artefakte verursachen kann. Außerdem unterstützt JPEG keine Transparenz, die ein Feature von anderen Formaten wie PNG und GIF ist.
Um einige der Einschränkungen des ursprünglichen JPEG-Standards zu adressieren, wurden neue Formate wie JPEG 2000 und JPEG XR entwickelt. Diese Formate bieten eine verbesserte Kompressionseffizienz, Unterstützung für höhere Bittiefe und zusätzliche Funktionen wie Transparenz und verlustfreie Kompression. Sie haben jedoch noch nicht den gleichen Grad an allgemeiner Verbreitung wie das ursprüngliche JPEG-Format erreicht.
Zusammenfassend ist das JPEG-Bildformat ein komplexer Ausgleich zwischen Mathematik, menschlicher Wahrnehmungspsychologie und Computerwissenschaften. Seine weite Verbreitung ist ein Beweis für seine Effektivität bei der Reduzierung der Dateigröße bei gleichzeitiger Beibehaltung eines Qualitätsniveaus, das für die meisten Anwendungen akzeptabel ist. Das Verständnis der technischen Aspekte von JPEG kann Anwender dabei unterstützen, fundierte Entscheidungen darüber zu treffen, wann dieses Format verwendet werden soll und wie ihre Bilder für das für ihre Bedürfnisse am besten geeignete Gleichgewicht aus Qualität und Dateigröße optimiert werden können.
Was ist das JXL Format?
JPEG XL-Bild
Das JPEG XL (JXL)-Bildformat ist ein Bildcodierungsstandard der nächsten Generation, der darauf abzielt, die Fähigkeiten bestehender Formate wie JPEG, PNG und GIF zu übertreffen, indem er eine überlegene Komprimierungseffizienz, Qualität und Funktionen bietet. Es ist das Ergebnis einer Zusammenarbeit des Joint Photographic Experts Group (JPEG)-Komitees, das maßgeblich an der Entwicklung von Bildkomprimierungsstandards beteiligt war. JPEG XL wurde als universelles Bildformat konzipiert, das eine Vielzahl von Anwendungsfällen abdecken kann, von professioneller Fotografie bis hin zu Webgrafiken.
Eines der Hauptziele von JPEG XL ist die Bereitstellung einer qualitativ hochwertigen Bildkomprimierung, die die Dateigröße erheblich reduzieren kann, ohne die visuelle Qualität zu beeinträchtigen. Dies wird durch eine Kombination aus fortschrittlichen Komprimierungstechniken und einem modernen Codierungsframework erreicht. Das Format verwendet einen modularen Ansatz, der es ermöglicht, verschiedene Bildverarbeitungsvorgänge wie Farbraumkonvertierungen, Tonwertzuordnung und reaktionsfähige Größenänderung direkt in die Komprimierungspipeline zu integrieren.
JPEG XL basiert auf zwei früheren Bildcodecs: Googles PIK und Cloudinarys FUIF (Free Universal Image Format). Diese Codecs führten mehrere Innovationen in der Bildkomprimierung ein, die in JPEG XL weiter verfeinert und integriert wurden. Das Format ist lizenzfrei konzipiert, was es zu einer attraktiven Option sowohl für Softwareentwickler als auch für Content-Ersteller macht, die eine kostengünstige Lösung für die Speicherung und Verteilung von Bildern benötigen.
Das Herzstück der Komprimierungseffizienz von JPEG XL ist die Verwendung einer modernen Entropiecodierungstechnik namens asymmetrische Zahlensysteme (ANS). ANS ist eine Form der arithmetischen Codierung, die nahezu optimale Komprimierungsverhältnisse liefert, indem die statistische Verteilung von Bilddaten effizient codiert wird. Dies ermöglicht JPEG XL eine bessere Komprimierung als herkömmliche Methoden wie die Huffman-Codierung, die im ursprünglichen JPEG-Format verwendet wird.
JPEG XL führt außerdem einen neuen Farbraum namens XYB (eXtra Y, Blue-yellow) ein, der besser auf die menschliche visuelle Wahrnehmung abgestimmt ist. Der XYB-Farbraum ermöglicht eine effizientere Komprimierung, indem die Komponenten eines Bildes priorisiert werden, die für das menschliche Auge wichtiger sind. Dies führt zu Bildern, die nicht nur kleinere Dateigrößen haben, sondern auch weniger Komprimierungsartefakte aufweisen, insbesondere in Bereichen mit subtilen Farbvariationen.
Ein weiteres wichtiges Merkmal von JPEG XL ist die Unterstützung von Bildern mit hohem Dynamikbereich (HDR) und großem Farbraum (WCG). Mit der Weiterentwicklung von Anzeigetechnologien besteht eine wachsende Nachfrage nach Bildformaten, die den erweiterten Helligkeits- und Farbbereich verarbeiten können, den diese neuen Displays erzeugen können. Die native Unterstützung von HDR und WCG durch JPEG XL stellt sicher, dass Bilder auf den neuesten Bildschirmen lebendig und naturgetreu aussehen, ohne dass zusätzliche Metadaten oder Sidecar-Dateien erforderlich sind.
JPEG XL wurde auch unter Berücksichtigung der progressiven Decodierung entwickelt. Dies bedeutet, dass ein Bild in einer niedrigeren Qualität angezeigt werden kann, während es noch heruntergeladen wird, und die Qualität kann sich schrittweise verbessern, wenn mehr Daten verfügbar werden. Diese Funktion ist besonders nützlich für das Surfen im Internet, wo Benutzer unterschiedliche Internetgeschwindigkeiten haben können. Sie ermöglicht eine bessere Benutzererfahrung, indem eine Vorschau des Bildes bereitgestellt wird, ohne dass auf den Download der gesamten Datei gewartet werden muss.
In Bezug auf die Abwärtskompatibilität bietet JPEG XL eine einzigartige Funktion namens „JPEG-Rekomprimierung“. Dadurch können vorhandene JPEG-Bilder ohne zusätzlichen Qualitätsverlust in das JPEG XL-Format rekomprimiert werden. Die rekomprimierten Bilder sind nicht nur kleiner, sondern behalten auch alle ursprünglichen JPEG-Daten, sodass sie bei Bedarf wieder in das ursprüngliche JPEG-Format konvertiert werden können. Dies macht JPEG XL zu einer attraktiven Option für die Archivierung großer Sammlungen von JPEG-Bildern, da es den Speicherbedarf erheblich reduzieren kann und gleichzeitig die Möglichkeit bietet, zu den Originaldateien zurückzukehren.
JPEG XL adressiert auch den Bedarf an responsiven Bildern im Web. Mit der Möglichkeit, mehrere Auflösungen eines Bildes in einer einzigen Datei zu speichern, können Webentwickler die am besten geeignete Bildgröße basierend auf dem Gerät und der Bildschirmauflösung des Benutzers bereitstellen. Dies macht separate Bilddateien für unterschiedliche Auflösungen überflüssig und vereinfacht den Prozess der Erstellung responsiver Webdesigns.
Für professionelle Fotografen und Grafikdesigner unterstützt JPEG XL die verlustfreie Komprimierung, die sicherstellt, dass jedes einzelne Bit der ursprünglichen Bilddaten erhalten bleibt. Dies ist entscheidend für Anwendungen, bei denen die Bildintegrität von größter Bedeutung ist, wie z. B. in der medizinischen Bildgebung, in digitalen Archiven und in der professionellen Fotobearbeitung. Der verlustfreie Modus von JPEG XL ist außerdem hocheffizient und führt oft zu kleineren Dateigrößen im Vergleich zu anderen verlustfreien Formaten wie PNG oder TIFF.
Der Funktionsumfang von JPEG XL umfasst auch die Unterstützung von Animationen, ähnlich den Formaten GIF und WebP, jedoch mit viel besserer Komprimierung und Qualität. Dies macht es zu einem geeigneten Ersatz für GIFs im Web und bietet flüssigere Animationen mit einer breiteren Farbpalette und ohne die Einschränkungen der 256-Farben-Beschränkung von GIF.
Das Format bietet außerdem eine robuste Unterstützung für Metadaten, einschließlich EXIF-, XMP- und ICC-Profile, um sicherzustellen, dass wichtige Informationen über das Bild während der Komprimierung erhalten bleiben. Diese Metadaten können Details wie Kameraeinstellungen, Urheberrechtsinformationen und Farbmanagementdaten enthalten, die sowohl für den professionellen Einsatz als auch für die Bewahrung des digitalen Erbes unerlässlich sind.
Auch Sicherheit und Datenschutz werden bei der Konzeption von JPEG XL berücksichtigt. Das Format erlaubt keine Einbindung von ausführbarem Code, was das Risiko von Sicherheitslücken reduziert, die über Bilder ausgenutzt werden können. Darüber hinaus unterstützt JPEG XL das Entfernen sensibler Metadaten, was zum Schutz der Privatsphäre der Benutzer beim Teilen von Bildern online beitragen kann.
JPEG XL ist zukunftssicher konzipiert, mit einem flexiblen Containerformat, das erweitert werden kann, um neue Funktionen und Technologien zu unterstützen, sobald sie auftauchen. Dies stellt sicher, dass sich das Format an sich ändernde Anforderungen anpassen kann und noch viele Jahre als universelles Bildformat dienen kann.
In Bezug auf die Akzeptanz befindet sich JPEG XL noch in einem frühen Stadium, wobei laufende Bemühungen unternommen werden, die Unterstützung in Webbrowsern, Betriebssystemen und Bildbearbeitungssoftware zu integrieren. Da immer mehr Plattformen das Format übernehmen, wird erwartet, dass es als Ersatz für ältere Bildformate an Bedeutung gewinnt und eine Kombination aus verbesserter Effizienz, Qualität und Funktionen bietet.
Zusammenfassend lässt sich sagen, dass JPEG XL einen bedeutenden Fortschritt in der Bildkomprimierungstechnologie darstellt. Seine Kombination aus hoher Komprimierungseffizienz, Unterstützung für moderne Bildgebungsfunktionen und Abwärtskompatibilität positioniert es als einen starken Kandidaten, um der neue Standard für die Speicherung und Übertragung von Bildern zu werden. Mit zunehmender Verbreitung des Formats hat es das Potenzial, die Art und Weise zu verändern, wie wir digitale Bilder erstellen, teilen und konsumieren, und sie für alle zugänglicher und angenehmer zu machen.
Unterstützte Formate
AAI.aai
AAI Dune Bild
AI.ai
Adobe Illustrator CS2
AVIF.avif
AV1 Bildformat
BAYER.bayer
Rohes Bayer-Bild
BMP.bmp
Microsoft Windows Bitmap-Bild
CIN.cin
Cineon-Bilddatei
CLIP.clip
Bild-Clip-Maske
CMYK.cmyk
Rohcyan-, Magenta-, Gelb- und Schwarzproben
CUR.cur
Microsoft-Symbol
DCX.dcx
ZSoft IBM PC mehrseitige Paintbrush
DDS.dds
Microsoft DirectDraw-Oberfläche
DPX.dpx
SMTPE 268M-2003 (DPX 2.0) Bild
DXT1.dxt1
Microsoft DirectDraw-Oberfläche
EPDF.epdf
Eingekapseltes tragbares Dokumentenformat
EPI.epi
Adobe Encapsulated PostScript Interchange-Format
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Adobe Encapsulated PostScript Interchange-Format
EPT.ept
Eingekapseltes PostScript mit TIFF-Vorschau
EPT2.ept2
Eingekapseltes PostScript Level II mit TIFF-Vorschau
EXR.exr
Bild mit hohem Dynamikbereich (HDR)
FF.ff
Farbfeld
FITS.fits
Flexibles Bildtransport-System
GIF.gif
CompuServe-Grafikaustauschformat
HDR.hdr
Bild mit hohem Dynamikbereich (HDR)
HEIC.heic
Hocheffizienter Bildcontainer
HRZ.hrz
Slow Scan TeleVision
ICO.ico
Microsoft-Symbol
ICON.icon
Microsoft-Symbol
J2C.j2c
JPEG-2000 Codestream
J2K.j2k
JPEG-2000 Codestream
JNG.jng
JPEG Network Graphics
JP2.jp2
JPEG-2000 Dateiformat Syntax
JPE.jpe
Joint Photographic Experts Group JFIF-Format
JPEG.jpeg
Joint Photographic Experts Group JFIF-Format
JPG.jpg
Joint Photographic Experts Group JFIF-Format
JPM.jpm
JPEG-2000 Dateiformat Syntax
JPS.jps
Joint Photographic Experts Group JPS-Format
JPT.jpt
JPEG-2000 Dateiformat Syntax
JXL.jxl
JPEG XL-Bild
MAP.map
Multi-Resolution Seamless Image Database (MrSID)
MAT.mat
MATLAB-Level-5-Bildformat
PAL.pal
Palm-Pixmap
PALM.palm
Palm-Pixmap
PAM.pam
Allgemeines zweidimensionales Bitmap-Format
PBM.pbm
Portable Bitmap-Format (schwarz-weiß)
PCD.pcd
Photo-CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Palm Database ImageViewer-Format
PDF.pdf
Portable Document Format
PDFA.pdfa
Portable Document Archive-Format
PFM.pfm
Portable Float-Format
PGM.pgm
Portable Graymap-Format (Graustufen)
PGX.pgx
JPEG-2000 unkomprimiertes Format
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Joint Photographic Experts Group JFIF-Format
PNG.png
Portable Network Graphics
PNG00.png00
PNG mit Bit-Tiefe und Farbtyp vom Originalbild erben
PNG24.png24
Opakes oder binäres transparentes 24-Bit-RGB (zlib 1.2.11)
PNG32.png32
Opakes oder binäres transparentes 32-Bit-RGBA
PNG48.png48
Opakes oder binäres transparentes 48-Bit-RGB
PNG64.png64
Opakes oder binäres transparentes 64-Bit-RGBA
PNG8.png8
Opakes oder binäres transparentes 8-Bit-Indexed
PNM.pnm
Portable Anymap
PPM.ppm
Portable Pixmap-Format (Farbe)
PS.ps
Adobe PostScript-Datei
PSB.psb
Adobe Large Document-Format
PSD.psd
Adobe Photoshop-Bitmap
RGB.rgb
Rohdaten für rote, grüne und blaue Proben
RGBA.rgba
Rohdaten für rote, grüne, blaue und Alpha-Proben
RGBO.rgbo
Rohdaten für rote, grüne, blaue und Opazität-Proben
SIX.six
DEC SIXEL-Grafikformat
SUN.sun
Sun Rasterfile
SVG.svg
Skalierbare Vektorgrafiken
TIFF.tiff
Tagged Image File Format
VDA.vda
Truevision-Targa-Bild
VIPS.vips
VIPS-Bild
WBMP.wbmp
Wireless Bitmap (Level 0) Bild
WEBP.webp
WebP-Bildformat
YUV.yuv
CCIR 601 4:1:1 oder 4:2:2
Häufig gestellte Fragen
Wie funktioniert das?
Dieser Konverter läuft vollständig in Ihrem Browser. Wenn Sie eine Datei auswählen, wird sie in den Speicher gelesen und in das ausgewählte Format konvertiert. Sie können die konvertierte Datei dann herunterladen.
Wie lange dauert die Konvertierung einer Datei?
Die Konvertierung beginnt sofort, und die meisten Dateien werden in weniger als einer Sekunde konvertiert. Größere Dateien können länger dauern.
Was passiert mit meinen Dateien?
Ihre Dateien werden niemals auf unsere Server hochgeladen. Sie werden in Ihrem Browser konvertiert, und die konvertierte Datei wird dann heruntergeladen. Wir sehen Ihre Dateien niemals.
Welche Dateitypen kann ich konvertieren?
Wir unterstützen die Konvertierung zwischen allen Bildformaten, einschließlich JPEG, PNG, GIF, WebP, SVG, BMP, TIFF und mehr.
Wie viel kostet das?
Dieser Konverter ist völlig kostenlos und wird immer kostenlos sein. Da er in Ihrem Browser läuft, müssen wir nicht für Server bezahlen, also müssen wir Ihnen auch nichts berechnen.
Kann ich mehrere Dateien auf einmal konvertieren?
Ja! Sie können so viele Dateien auf einmal konvertieren, wie Sie möchten. Wählen Sie einfach mehrere Dateien aus, wenn Sie sie hinzufügen.