JPEG Arka Plan Silici

Tarayıcınızda herhangi bir resmin arka planını kaldırın. Ücretsiz, sonsuza dek.

Özel ve güvenli

Her şey tarayıcınızda gerçekleşir. Dosyalarınız sunucularımıza asla dokunmaz.

Çok hızlı

Yükleme yok, bekleme yok. Bir dosyayı bıraktığınız anda dönüştürün.

Gerçekten ücretsiz

Hesap gerekmez. Gizli maliyet yok. Dosya boyutu hilesi yok.

Arka plan kaldırma, bir konuyu çevresinden ayırır, böylece onu şeffaflık üzerine yerleştirebilir, sahneyi değiştirebilir veya yeni bir tasarıma entegre edebilirsiniz. Kaputun altında bir alfa maskesi—piksel başına 0'dan 1'e kadar bir opaklık—tahmin ediyor ve ardından ön planı alfa kompozitleme ile başka bir şeyin üzerine yerleştiriyorsunuz. Bu, Porter–Duff matematiğidir ve “saçaklar” ve düz ve önceden çarpılmış alfa gibi yaygın sorunların nedenidir. Önceden çarpma ve doğrusal renk hakkında pratik rehberlik için Microsoft’un Win2D notlarına, Søren Sandmann’a ve Lomont’un doğrusal harmanlama üzerine yazısına bakın.


İnsanların arka planları kaldırmasının ana yolları

1) Kroma anahtarı (“yeşil/mavi ekran”)

Çekimi kontrol edebiliyorsanız, arka planı düz bir renge (genellikle yeşil) boyayın ve bu tonu anahtarlayın. Hızlıdır, film ve yayında kendini kanıtlamıştır ve video için idealdir. Dezavantajları aydınlatma ve kıyafetlerdir: renkli ışık kenarlara (özellikle saça) taşar, bu nedenle kirlenmeyi nötralize etmek için dökülme önleyici araçlar kullanırsınız. İyi başlangıç kılavuzları arasında Nuke’un belgeleri, Mixing Light ve uygulamalı bir Fusion demosu bulunur.

2) Etkileşimli segmentasyon (klasik CV)

Dağınık arka planlara sahip tek görüntüler için, etkileşimli algoritmalar birkaç kullanıcı ipucuna ihtiyaç duyar—örneğin, gevşek bir dikdörtgen veya karalamalar—ve keskin bir maske oluşturur. Kanonik yöntem GrabCut’tır (kitap bölümü), ön plan/arka plan için renk modelleri öğrenir ve bunları ayırmak için yinelemeli olarak grafik kesimlerini kullanır. Benzer fikirleri GIMP’in Ön Plan Seçimi’nde SIOX’a dayalı olarak görürsünüz (ImageJ eklentisi).

3) Görüntü matlaştırma (ince taneli alfa)

Matlaştırma, ince sınırlardaki (saç, kürk, duman, cam) kesirli şeffaflığı çözer. Klasik kapalı form matlaştırma bir üçlü harita (kesinlikle-ön plan/kesinlikle-arka plan/bilinmeyen) alır ve güçlü kenar doğruluğu ile alfa için doğrusal bir sistemi çözer. Modern derin görüntü matlaştırma Adobe Composition-1K veri setinde sinir ağlarını eğitir (MMEditing belgeleri) ve SAD, MSE, Gradyan ve Bağlantı gibi metriklerle değerlendirilir (kıyaslama açıklaması).

4) Derin öğrenme kesikleri (üçlü harita yok)

İlgili segmentasyon çalışmaları da faydalıdır: DeepLabv3+, bir kodlayıcı-kod çözücü ve atrous evrişimleri ile sınırları iyileştirir (PDF); Mask R-CNN, örnek başına maskeler verir (PDF); ve SAM (Segment Anything), bilinmeyen görüntülerde sıfır atışlı maskeler oluşturan istemle yönlendirilebilir bir temel modeldir.


Popüler araçlar ne yapar


Daha temiz kesikler için iş akışı ipuçları

  1. Akıllıca çekim yapın. İyi aydınlatma ve güçlü konu-arka plan kontrastı her yönteme yardımcı olur. Yeşil/mavi ekranlarla, dökülme önleyici planlayın (kılavuz).
  2. Geniş başlayıp detaya inin. Otomatik bir seçim çalıştırın (Konuyu Seç, U2-Net, SAM), ardından kenarları fırçalarla veya matlaştırma ile iyileştirin (örneğin, kapalı form).
  3. Yarı saydamlığa dikkat edin. Cam, tül, hareket bulanıklığı, uçuşan saçlar gerçek alfa gerektirir (sadece sert bir maske değil). Ayrıca F/B/α'yı kurtaran yöntemler haloları en aza indirir.
  4. Alfa kanalını anlayın. Düz ve önceden çarpılmış farklı kenar davranışları üretir; tutarlı bir şekilde dışa aktarın/birleştirin (bkz. genel bakış, Hargreaves).
  5. Doğru çıktıyı seçin. “Arka plan yok” için, temiz bir alfa içeren bir raster (örneğin, PNG/WebP) teslim edin veya daha fazla düzenleme bekleniyorsa maskeli katmanlı dosyaları saklayın. Anahtar, hesapladığınız alfanın kalitesidirPorter–Duff’a dayanır.

Kalite ve değerlendirme

Akademik çalışmalar, Composition-1K üzerinde SAD, MSE, Gradyan ve Bağlantı hatalarını raporlar. Bir model seçiyorsanız, bu metriklere bakın (metrik tanımları; Arka Plan Matlaştırma metrikleri bölümü). Portreler/video için, MODNet ve Arka Plan Matlaştırma V2 güçlüdür; genel “belirgin nesne” görüntüleri için, U2-Net sağlam bir temeldir; zor şeffaflık için, FBA daha iyi sonuç verebilir.


Yaygın uç durumlar (ve düzeltmeleri)

  • Saç ve kürk: matlaştırmayı tercih edin (üçlü harita veya MODNet gibi portre matlaştırma) ve dama tahtası arka planında inceleyin.
  • İnce yapılar (bisiklet telleri, misina): yüksek çözünürlüklü girdiler ve matlaştırmadan önce bir ön adım olarak DeepLabv3+ gibi sınıra duyarlı bir segmentleyici kullanın.
  • Şeffaf nesneler (duman, cam): kesirli alfaya ve genellikle ön plan renk tahminine ihtiyacınız vardır (FBA).
  • Video konferans: temiz bir plaka yakalayabilirseniz, Arka Plan Matlaştırma V2, saf “sanal arka plan” seçeneklerinden daha doğal görünür.

Bu gerçek dünyada nerede ortaya çıkıyor


Kesiklerin bazen neden sahte göründüğü (ve düzeltmeleri)

  • Renk dökülmesi: yeşil/mavi ışık konunun üzerine sarılır— dökülme önleyici kontrolleri veya hedeflenmiş renk değişimi kullanın.
  • Hale/saçaklar: genellikle bir alfa yorumlama uyuşmazlığı (düz ve önceden çarpılmış) veya eski arka planla kirlenmiş kenar pikselleri; doğru şekilde dönüştürün/yorumlayın (genel bakış, ayrıntılar).
  • Yanlış bulanıklık/gren: jilet gibi keskin bir konuyu bulanık bir arka plana yapıştırın ve öne çıkar; kompozisyon sonrası lens bulanıklığını ve greni eşleştirin (bkz. Porter–Duff temelleri).

TL;DR oyun kitabı

  1. Çekimi kontrol ediyorsanız: kroma anahtarı kullanın; eşit şekilde aydınlatın; dökülme önleyici planlayın.
  2. Tek seferlik bir fotoğrafsa: Photoshop’un Arka Planı Kaldır’ını, Canva’nın kaldırıcısını veya remove.bg’yi deneyin; saç için fırçalar/matlaştırma ile iyileştirin.
  3. Üretim sınıfı kenarlara ihtiyacınız varsa: matlaştırma kullanın ( kapalı form veya derin) ve şeffaflık üzerinde alfayı kontrol edin; alfa yorumlamasına dikkat edin.
  4. Portreler/video için: MODNet veya Arka Plan Matlaştırma V2’yi düşünün; tıklama güdümlü segmentasyon için, SAM güçlü bir ön uçtur.

JPEG formatı nedir?

Joint Photographic Experts Group JFIF biçimi

JPEG, Ortak Fotoğraf Uzmanları Grubu anlamına gelir, dijital fotoğrafçılıkla üretilen görüntüler için özellikle kayıplı sıkıştırma yöntemi olarak yaygın olarak kullanılan bir yöntemdir. Sıkıştırma derecesi ayarlanabilir ve depolama boyutu ile görüntü kalitesi arasında seçilebilir bir denge sağlar. JPEG, genellikle görüntü kalitesinde çok az algılanabilir kayıpla 10:1 sıkıştırma elde eder.

JPEG sıkıştırma algoritması, JPEG standardının merkezinde yer alır. İşlem, tipik RGB renk uzayından YCbCr olarak bilinen farklı bir renk uzayına dönüştürülen dijital bir görüntüyle başlar. YCbCr renk uzayı, görüntüyü parlaklık seviyelerini temsil eden parlaklık (Y) ve renk bilgilerini temsil eden renk farkı (Cb ve Cr) olmak üzere ayırır. Bu ayrım faydalıdır çünkü insan gözü renklerden ziyade parlaklıktaki değişikliklere karşı daha hassastır ve bu da sıkıştırmanın renk bilgilerini parlaklıktan daha fazla sıkıştırarak bundan yararlanmasını sağlar.

Görüntü YCbCr renk uzayına girdikten sonra, JPEG sıkıştırma işlemindeki bir sonraki adım, renk farkı kanallarını aşağı örneklemektir. Aşağı örnekleme, insan gözünün renk ayrıntılarına karşı daha düşük hassasiyeti nedeniyle genellikle görüntünün algılanan kalitesini önemli ölçüde etkilemeyen renk farkı bilgilerinin çözünürlüğünü azaltır. Bu adım isteğe bağlıdır ve görüntü kalitesi ile dosya boyutu arasındaki istenen dengeye bağlı olarak ayarlanabilir.

Aşağı örneklemeden sonra görüntü, genellikle 8x8 piksel boyutunda bloklara bölünür. Ardından her blok ayrı ayrı işlenir. Her bloğu işlemenin ilk adımı, Ayrık Kosinüs Dönüşümü'nü (DCT) uygulamaktır. DCT, uzamsal alan verilerini (piksel değerlerini) frekans alanına dönüştüren matematiksel bir işlemdir. Sonuç, görüntü bloğunun verilerini uzamsal frekans bileşenleri açısından temsil eden bir frekans katsayıları matrisidir.

DCT'den kaynaklanan frekans katsayıları daha sonra nicelenir. Niceleme, büyük bir giriş değerleri kümesini daha küçük bir kümeye eşleme işlemidir - JPEG durumunda bu, frekans katsayılarının hassasiyetini azaltmak anlamına gelir. Sıkıştırmanın kayıplı kısmı burada gerçekleşir, çünkü bazı görüntü bilgileri atılır. Niceleme adımı, her frekans bileşenine ne kadar sıkıştırma uygulanacağını belirleyen bir nicelleme tablosu tarafından kontrol edilir. Nicelleme tabloları, daha yüksek görüntü kalitesini (daha az sıkıştırma) veya daha küçük dosya boyutunu (daha fazla sıkıştırma) desteklemek için ayarlanabilir.

Nicellemeden sonra katsayılar, sol üst köşeden başlayarak ve daha yüksek frekanslı bileşenlere göre daha düşük frekanslı bileşenlere öncelik veren bir zikzak düzeninde düzenlenir. Bunun nedeni, daha düşük frekanslı bileşenlerin (görüntünün daha düzgün kısımlarını temsil eden) daha yüksek frekanslı bileşenlerden (daha ince ayrıntıları ve kenarları temsil eden) genel görünüm için daha önemli olmasıdır.

JPEG sıkıştırma işlemindeki bir sonraki adım, kayıpsız bir sıkıştırma yöntemi olan entropi kodlamadır. JPEG'de kullanılan en yaygın entropi kodlama biçimi Huffman kodlamasıdır, ancak aritmetik kodlama da bir seçenektir. Huffman kodlaması, daha sık görülen olaylara daha kısa kodlar ve daha az sık görülen olaylara daha uzun kodlar atayarak çalışır. Zikzak düzeni benzer frekans katsayılarını bir araya getirme eğiliminde olduğundan, Huffman kodlamasının verimliliğini artırır.

Entropi kodlaması tamamlandıktan sonra, sıkıştırılmış veriler JPEG standardına uygun bir dosya biçiminde saklanır. Bu dosya biçimi, boyutları ve kullanılan nicelleme tabloları gibi görüntü hakkında bilgi içeren bir üst bilgi içerir ve ardından Huffman kodlu görüntü verileri gelir. Dosya biçimi ayrıca, fotoğrafı çekmek için kullanılan kamera ayarları, çekildiği tarih ve saat ve diğer ilgili ayrıntılar hakkında bilgi içerebilen EXIF verileri gibi meta verilerin eklenmesini de destekler.

Bir JPEG görüntüsü açıldığında, sıkıştırma işlemi sıkıştırma adımlarını esasen tersine çevirir. Huffman kodlu veriler kodunun çözülmesi, nicelenen frekans katsayıları sıkıştırma sırasında kullanılan aynı nicelleme tabloları kullanılarak nicelenir ve ters Ayrık Kosinüs Dönüşümü (IDCT), frekans alanı verilerini uzamsal alan piksel değerlerine geri dönüştürmek için her bloğa uygulanır.

Nicelenme ve IDCT işlemleri, sıkıştırmanın kayıplı doğası nedeniyle bazı hatalar getirir, bu nedenle JPEG, birden fazla düzenlemeye ve yeniden kaydetmeye tabi tutulacak görüntüler için ideal değildir. Bir JPEG görüntüsü her kaydedildiğinde, sıkıştırma işleminden tekrar geçer ve ek görüntü bilgisi kaybolur. Bu, zamanla görüntü kalitesinde gözle görülür bir bozulmaya yol açabilir, bu da 'nesil kaybı' olarak bilinen bir olgudur.

JPEG sıkıştırmasının kayıplı doğasına rağmen, esnekliği ve verimliliği nedeniyle popüler bir görüntü formatı olmaya devam etmektedir. JPEG görüntüleri dosya boyutu olarak çok küçük olabilir, bu da bunları bant genişliği ve yükleme sürelerinin önemli hususlar olduğu web üzerinde kullanım için ideal hale getirir. Ek olarak, JPEG standardı, bir görüntünün birden fazla geçişte kodlanmasına izin veren ve her geçişin görüntünün çözünürlüğünü iyileştirdiği aşamalı bir mod içerir. Bu, web görüntüleri için özellikle kullanışlıdır, çünkü görüntünün düşük kaliteli bir sürümünün hızlı bir şekilde görüntülenmesine olanak tanır ve daha fazla veri indirildikçe kalite artar.

JPEG'in ayrıca bazı sınırlamaları vardır ve her tür görüntü için her zaman en iyi seçim değildir. Örneğin, keskin kenarları veya yüksek kontrastlı metni olan görüntüler için uygun değildir, çünkü sıkıştırma bu alanların etrafında fark edilir eserler oluşturabilir. Ek olarak, JPEG, PNG ve GIF gibi diğer formatlar tarafından sağlanan bir özellik olan şeffaflığı desteklemez.

Orijinal JPEG standardının bazı sınırlamalarını gidermek için JPEG 2000 ve JPEG XR gibi yeni formatlar geliştirilmiştir. Bu formatlar, gelişmiş sıkıştırma verimliliği, daha yüksek bit derinlikleri desteği ve şeffaflık ve kayıpsız sıkıştırma gibi ek özellikler sunar. Ancak, henüz orijinal JPEG formatıyla aynı yaygın benimseme düzeyine ulaşamamışlardır.

Sonuç olarak, JPEG görüntü formatı, matematik, insan görsel psikolojisi ve bilgisayar biliminin karmaşık bir dengesidir. Yaygın kullanımı, çoğu uygulama için kabul edilebilir bir görüntü kalitesi seviyesini korurken dosya boyutlarını azaltmadaki etkinliğinin bir kanıtıdır. JPEG'in teknik yönlerini anlamak, kullanıcıların bu formatı ne zaman kullanacakları ve kalite ve dosya boyutu dengesini ihtiyaçlarına en uygun şekilde optimize etmek için görüntülerini nasıl optimize edecekleri konusunda bilinçli kararlar vermelerine yardımcı olabilir.

Desteklenen formatlar

AAI.aai

AAI Dune resmi

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Resim Dosya Biçimi

BAYER.bayer

Ham Bayer Resmi

BMP.bmp

Microsoft Windows bitmap resmi

CIN.cin

Cineon Resim Dosyası

CLIP.clip

Resim Clip Maskesi

CMYK.cmyk

Ham siyan, magenta, sarı ve siyah örnekleri

CUR.cur

Microsoft simgesi

DCX.dcx

ZSoft IBM PC çok sayfalı Paintbrush

DDS.dds

Microsoft DirectDraw Yüzeyi

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) resmi

DXT1.dxt1

Microsoft DirectDraw Yüzeyi

EPDF.epdf

Encapsulated Portable Document Format

EPI.epi

Adobe Encapsulated PostScript Interchange biçimi

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange biçimi

EPT.ept

TIFF önizlemeli Encapsulated PostScript

EPT2.ept2

TIFF önizlemeli Encapsulated PostScript Level II

EXR.exr

Yüksek dinamik aralıklı (HDR) resim

FF.ff

Farbfeld

FITS.fits

Esnek Resim Taşıma Sistemi

GIF.gif

CompuServe grafik değişim biçimi

HDR.hdr

Yüksek Dinamik Aralıklı resim

HEIC.heic

Yüksek Verimlilik Görüntü Kapsayıcısı

HRZ.hrz

Yavaş Tarama Televizyonu

ICO.ico

Microsoft simgesi

ICON.icon

Microsoft simgesi

J2C.j2c

JPEG-2000 kod akışı

J2K.j2k

JPEG-2000 kod akışı

JNG.jng

JPEG Ağ Grafikleri

JP2.jp2

JPEG-2000 Dosya Biçimi Sözdizimi

JPE.jpe

Joint Photographic Experts Group JFIF biçimi

JPEG.jpeg

Joint Photographic Experts Group JFIF biçimi

JPG.jpg

Joint Photographic Experts Group JFIF biçimi

JPM.jpm

JPEG-2000 Dosya Biçimi Sözdizimi

JPS.jps

Joint Photographic Experts Group JPS biçimi

JPT.jpt

JPEG-2000 Dosya Biçimi Sözdizimi

JXL.jxl

JPEG XL resmi

MAP.map

Çok çözünürlüklü Dikişsiz Resim Veritabanı (MrSID)

MAT.mat

MATLAB seviye 5 resim biçimi

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Ortak 2-boyutlu bitmap formatı

PBM.pbm

Taşınabilir bitmap formatı (siyah ve beyaz)

PCD.pcd

Fotoğraf CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Veritabanı ImageViewer Formatı

PDF.pdf

Taşınabilir Belge Formatı

PDFA.pdfa

Taşınabilir Belge Arşiv Formatı

PFM.pfm

Taşınabilir float formatı

PGM.pgm

Taşınabilir gri tonlama formatı (gri ölçek)

PGX.pgx

JPEG 2000 sıkıştırılmamış formatı

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF formatı

PNG.png

Taşınabilir Ağ Grafikleri

PNG00.png00

PNG orijinal görüntüden bit derinliği, renk tipi devralan

PNG24.png24

Opak veya ikili saydam 24-bit RGB (zlib 1.2.11)

PNG32.png32

Opak veya ikili saydam 32-bit RGBA

PNG48.png48

Opak veya ikili saydam 48-bit RGB

PNG64.png64

Opak veya ikili saydam 64-bit RGBA

PNG8.png8

Opak veya ikili saydam 8-bit dizinli

PNM.pnm

Taşınabilir herhangi bir harita

PPM.ppm

Taşınabilir pixmap formatı (renk)

PS.ps

Adobe PostScript dosyası

PSB.psb

Adobe Büyük Belge Formatı

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

Ham kırmızı, yeşil ve mavi örnekleri

RGBA.rgba

Ham kırmızı, yeşil, mavi ve alfa örnekleri

RGBO.rgbo

Ham kırmızı, yeşil, mavi ve opaklık örnekleri

SIX.six

DEC SIXEL Grafik Formatı

SUN.sun

Sun Rasterfile

SVG.svg

Ölçeklenebilir Vektör Grafikleri

TIFF.tiff

Etiketli Görüntü Dosya Formatı

VDA.vda

Truevision Targa görüntüsü

VIPS.vips

VIPS görüntüsü

WBMP.wbmp

Kablosuz Bitmap (seviye 0) görüntüsü

WEBP.webp

WebP Görüntü Formatı

YUV.yuv

CCIR 601 4:1:1 veya 4:2:2

Sıkça sorulan sorular

Bu nasıl çalışır?

Bu dönüştürücü tamamen tarayıcınızda çalışır. Bir dosya seçtiğinizde, belleğe okunur ve seçilen biçime dönüştürülür. Ardından dönüştürülen dosyayı indirebilirsiniz.

Bir dosyayı dönüştürmek ne kadar sürer?

Dönüştürmeler anında başlar ve çoğu dosya bir saniyeden kısa sürede dönüştürülür. Daha büyük dosyalar daha uzun sürebilir.

Dosyalarıma ne olur?

Dosyalarınız asla sunucularımıza yüklenmez. Tarayıcınızda dönüştürülürler ve dönüştürülen dosya daha sonra indirilir. Dosyalarınızı asla görmeyiz.

Hangi dosya türlerini dönüştürebilirim?

JPEG, PNG, GIF, WebP, SVG, BMP, TIFF ve daha fazlası dahil olmak üzere tüm resim formatları arasında dönüştürmeyi destekliyoruz.

Bu ne kadar?

Bu dönüştürücü tamamen ücretsizdir ve her zaman ücretsiz olacaktır. Tarayıcınızda çalıştığı için sunucular için ödeme yapmamıza gerek yoktur, bu nedenle sizden ücret almamıza gerek yoktur.

Aynı anda birden fazla dosyayı dönüştürebilir miyim?

Evet! İstediğiniz kadar dosyayı aynı anda dönüştürebilirsiniz. Sadece eklerken birden fazla dosya seçin.