รูปแบบไฟล์ .AAI แม้จะไม่ได้รับการยอมรับอย่างแพร่หลายเท่ากับรูปแบบอื่นๆ แต่ก็มีบทบาทสำคัญในด้านเทคนิคและการออกแบบเฉพาะทาง โดยพื้นฐานแล้ว รูปแบบไฟล์ .AAI เป็นรูปแบบไฟล์ภาพประเภทหนึ่งที่ให้คุณสมบัติและประโยชน์ที่ไม่เหมือนใครสำหรับแอปพลิเคชันบางอย่าง ความเข้าใจในแง่มุมทางเทคนิค แอปพลิเคชัน และการจัดการไฟล์ .AAI สามารถให้ข้อมูลเชิงลึกที่มีค่าสำหรับทั้งมืออาชีพและผู้ที่ชื่นชอบในสาขาที่เกี่ยวข้อง
เริ่มแรก สิ่งสำคัญคือต้องทำความเข้าใจถึงที่มาและการพัฒนาของรูปแบบไฟล์ .AAI ไฟล์ AAI ซึ่งมีต้นกำเนิดมาจากแอปพลิเคชันซอฟต์แวร์เฉพาะทางที่ออกแบบมาเพื่อวัตถุประสงค์ทางวิชาการและการวิจัย ได้รับการออกแบบมาเพื่อจัดการข้อมูลกราฟิกที่ซับซ้อนในแบบที่รูปแบบไฟล์อื่นๆ ที่พบเห็นได้ทั่วไปไม่สามารถทำได้ จุดเน้นหลักอยู่ที่การสร้างรูปแบบที่สามารถจัดเก็บและจัดการภาพความละเอียดสูงที่ใช้ในการวิจัยทางวิทยาศาสตร์ได้อย่างมีประสิทธิภาพ โดยเฉพาะอย่างยิ่งในกรณีที่ความแม่นยำและรายละเอียดมีความสำคัญสูงสุด
หนึ่งในคุณสมบัติที่โดดเด่นของรูปแบบไฟล์ .AAI คือความสามารถในการรักษาคุณภาพของภาพในระดับสูงเป็นพิเศษโดยสูญเสียรายละเอียดเพียงเล็กน้อย ซึ่งทำได้โดยใช้เทคนิคการบีบอัดและการจัดโครงสร้างข้อมูลที่แตกต่างจากไฟล์ AAI จากรูปแบบอื่นๆ เช่น JPEG หรือ PNG โดยเฉพาะ ไฟล์ AAI ใช้การบีบอัดแบบไม่สูญเสียข้อมูล เพื่อให้มั่นใจว่าเมื่อภาพถูกบีบอัดเพื่อลดขนาดไฟล์ จะไม่มีการสูญเสียคุณภาพหรือรายละเอียดที่สำคัญ
ยิ่งไปกว่านั้น รูปแบบไฟล์ .AAI รองรับความลึกของสีในช่วงกว้าง ทำให้เหมาะสำหรับข้อมูลภาพประเภทต่างๆ รวมถึงภาพถ่ าย ศิลปะดิจิทัล และแผนภาพทางเทคนิค ความหลากหลายในการจัดการสีนี้เป็นประโยชน์อย่างยิ่งสำหรับผู้เชี่ยวชาญที่ต้องการความแม่นยำและความถูกต้องของสีในระดับสูงในงานของตน เช่น นักออกแบบกราฟิก นักวิจัย และวิศวกร
ในแง่ของข้อกำหนดทางเทคนิค ไฟล์ AAI มักจะมีโครงสร้างที่ไม่เหมือนใครซึ่งรองรับทั้งข้อมูลแบบแรสเตอร์และเวกเตอร์ แนวทางแบบผสมผสานนี้ช่วยให้รูปแบบสามารถจัดการข้อมูลกราฟิกประเภทต่างๆ ได้อย่างมีประสิทธิภาพและยืดหยุ่น ข้อมูลแบบแรสเตอร์มีความสำคัญสำหรับภาพและภาพถ่ายที่มีรายละเอียด ส่วนข้อมูลแบบเวกเตอร์มีประโยชน์สำหรับกราฟิกที่ปรับขนาดได้ เช่น โลโก้และภาพวาดทางเทคนิค เพื่อให้มั่นใจว่าองค์ประกอบเหล่านี้จะไม่สูญเสียคุณภาพเมื่อมีการปรับขนาด
การจัดการและการทำงานกับไฟล์ AAI จำเป็นต้องใช้เครื่องมือซอฟต์แว ร์เฉพาะที่สามารถประมวลผลรูปแบบนี้ได้ แม้ว่าจะไม่ได้รับการสนับสนุนอย่างกว้างขวางเท่ากับรูปแบบภาพอื่นๆ แต่ซอฟต์แวร์กราฟิกและการแก้ไขภาพเฉพาะทางจำนวนมากได้รวมการสนับสนุนไฟล์ AAI ไว้ด้วย เครื่องมือเหล่านี้มีฟังก์ชันการทำงานสำหรับการดู การแก้ไข และการแปลงไฟล์ AAI จึงทำให้ผู้ใช้ที่จำเป็นต้องทำงานกับรูปแบบไฟล์ประเภทนี้เป็นประจำสามารถเข้าถึงได้
สำหรับนักพัฒนาและวิศวกรซอฟต์แวร์ที่ต้องการรวมการสนับสนุนไฟล์ AAI เข้ากับแอปพลิเคชันของตน ความเข้าใจในข้อกำหนดของรูปแบบเป็นสิ่งสำคัญ ข้อกำหนดของรูปแบบ AAI ระบุโครงสร้างของไฟล์ รวมถึงส่วนหัว ส่วนข้อมูล และเทคนิคการบีบอัดที่ใช้ ความคุ้นเคยกับข้อกำหนดนี้สามารถช่วยในการพัฒนาแอปพลิเคชันหรือเครื่องมือที่สามารถสร้าง จัดการ หรือแปลงไฟล์ AAI ได้อย่างมีประสิทธิภาพ
หนึ่งในควา มท้าทายที่เกี่ยวข้องกับรูปแบบไฟล์ AAI คือความเข้ากันได้และการสนับสนุนที่จำกัดในซอฟต์แวร์การดูและแก้ไขกราฟิกมาตรฐาน ข้อจำกัดนี้มักจำเป็นต้องใช้เครื่องมือเฉพาะทางหรือการแปลงไฟล์ AAI เป็นรูปแบบที่ได้รับการสนับสนุนทั่วไปมากขึ้นสำหรับแอปพลิเคชันที่กว้างขึ้น อย่างไรก็ตาม สำหรับอุตสาหกรรมและสาขาที่ต้องการข้อได้เปรียบเฉพาะของรูปแบบ AAI การแลกเปลี่ยนในแง่ของการใช้ซอฟต์แวร์เฉพาะทางมักจะถือว่าคุ้มค่า
การแปลงไฟล์ AAI เป็นรูปแบบอื่นเป็นวิธีการทั่วไปเพื่ออำนวยความสะดวกในการใช้งานและความเข้ากันได้ที่กว้างขึ้น เครื่องมือและซอฟต์แวร์ที่รองรับการอ่านไฟล์ AAI มักสามารถส่งออกหรือแปลงไฟล์เหล่านี้เป็นรูปแบบต่างๆ เช่น JPEG, PNG หรือ TIFF กระบวนการนี้ช่วยให้สามารถรวมข้อมูลไฟล์ AAI เข้ากับเวิร์กโฟลว์และโปรเจ็กต์ทั่วไปได้มากขึ้น ซึ่ งจะขยายการใช้งานของข้อมูลที่มีอยู่ในไฟล์เหล่านี้
เนื่องจากลักษณะเฉพาะของรูปแบบไฟล์ AAI จึงมีทรัพยากรและชุมชนที่อุทิศให้กับการใช้งานน้อยกว่าเมื่อเทียบกับรูปแบบไฟล์ภาพทั่วไป อย่างไรก็ตาม ฟอรัมออนไลน์ เอกสารซอฟต์แวร์เฉพาะทาง และกลุ่มผู้ใช้สามารถเป็นทรัพยากรที่มีค่าสำหรับบุคคลที่ต้องการเรียนรู้เพิ่มเติมเกี่ยวกับไฟล์ AAI แก้ไขปัญหา หรือพัฒนาแอปพลิเคชันใหม่ที่ใช้ประโยชน์จากรูปแบบนี้
เมื่อมองไปในอนาคต วิวัฒนาการของรูปแบบไฟล์ .AAI น่าจะได้รับอิทธิพลจากความก้าวหน้าในเทคโนโลยีการประมวลผลภาพและความต้องการที่เปลี่ยนแปลงไปของสาขาที่ใช้เป็นหลัก เมื่อความละเอียดและคุณภาพของภาพยังคงมีความสำคัญมากขึ้นในสาขาวิชาเทคนิคและความคิดสร้างสรรค์ต่างๆ ความต้องการรูปแบบไฟล์ที่สามารถจัดการข้อมูลภาพคุณภาพสูงได้อย่างมีประสิทธิภาพก็จะเพิ่มขึ้น รูปแบบไฟล์ AAI ซึ่งมุ่งเน้นที่คุณภาพและการรักษาไว้ซึ่งรายละเอียด จึงอยู่ในตำแหน่งที่ดีที่จะตอบสนองความต้องการใหม่ๆ เหล่านี้
ยิ่งไปกว่านั้น ศักยภาพในการรวมเทคโนโลยีปัญญาประดิษฐ์และการเรียนรู้ของเครื่องเข้ากับการจัดการไฟล์ AAI ยังเปิดโอกาสที่น่าตื่นเต้น เครื่องมือที่ขับเคลื่อนด้วย AI สามารถเพิ่มประสิทธิภาพในการสร้าง การแก้ไข และการแปลงไฟล์ AAI ทำให้รูปแบบนี้เข้าถึงได้มากขึ้นและลดการพึ่งพาซอฟต์แวร์เฉพาะทาง ความก้าวหน้าดังกล่าวอาจช่วยเพิ่มประสิทธิภาพของกระบวนการบีบอัดและการเพิ่มประสิทธิภาพข้อมูล ทำให้รูปแบบ AAI น่าสนใจยิ่งขึ้นสำหรับการจัดการภาพความละเอียดสูง
สรุปแล้ว รูปแบบไฟล์ .AAI เป็นเครื่องมือเฉพาะทางแต่มีค่าอย่างยิ่งในคลังแสงของผู้เชี่ยวชาญที่ต้องการความสามารถในการจัดเก็บและจัดการภาพที่มีความเที่ยงตรงสูง การผสมผสานที่ไม่เหมือนใครของการบีบอัดแบบไม่สูญเสียข้อมูล การรองรับความลึกของสี และการจัดโครงสร้างข้อมูลแบบผสมผสาน ทำให้เป็นตัวเลือกที่โดดเด่นสำหรับแอปพลิเคชันเฉพาะ โดยเฉพาะอย่างยิ่งในด้านการวิจัย การออกแบบ และด้านเทคนิค แม้ว่าความท้าทายในด้านความเข้ากันได้และการเข้าถึงจะยังคงมีอยู่ แต่การพัฒนาทางเทคโนโลยีอย่างต่อเนื่องและการสนับสนุนจากชุมชนยังคงช่วยเพิ่มการใช้งานและความเกี่ยวข้องของรูปแบบไฟล์ AAI สำหรับผู้ที่ลงทุนในการจัดการข้อมูลภาพขั้นสูง การทำความคุ้นเคยกับรูปแบบ AAI และความสามารถของรูปแบบนี้ไม่เพียงแต่จะเป็นประโยชน์เท่านั้น แต่ยังอาจเปิดโอกาสใหม่ๆ สำหรับนวัตกรรมและประสิทธิภาพในการทำงานของตนอีกด้วย
JPEG ซึ่งย่อมาจาก Joint Photographic Experts Group เป็นวิธีการบีบอัดแบบสูญเสียข้อมูลที่ใช้กันทั่วไปสำหรับภาพดิจิทัล โดยเฉพาะอย่างยิ่งสำหรับภาพที่ถ่ายด้วยกล้องดิจิทัล ระดับการบีบอัดสามารถปรับได้ ซึ่งช่วยให้สามารถเลือกการแลกเปลี่ยนระหว่างขนาดที่จัดเก็บและคุณภาพของภาพได้ JPEG มักจะบรรลุการบีบอัด 10:1 โดยสูญเสียคุณภาพของภาพเพียงเล็กน้อย
อัลกอริทึมการบีบอัด JPEG เป็นหัวใจหลักของมาตรฐาน JPEG กระบวนการเริ่มต้นด้วยการแปลงภาพดิจิทัลจากพื้นที่สี RGB ทั่วไปไปเป็นพื้นที่สีอื่นที่เรียกว่า YCbCr พื้นที่สี YCbCr แยกภาพออกเป็นความสว่าง (Y) ซึ่งแสดงระดับความสว่าง และความอิ่มตัวของสี (Cb และ Cr) ซึ่งแสดงข้อมูลสี การแยกนี้เป็นประโยชน์เพราะดวงตาของมนุษ ย์มีความไวต่อการเปลี่ยนแปลงของความสว่างมากกว่าสี ซึ่งช่วยให้การบีบอัดสามารถใช้ประโยชน์จากสิ่งนี้ได้โดยการบีบอัดข้อมูลสีมากกว่าความสว่าง
เมื่อภาพอยู่ในพื้นที่สี YCbCr ขั้นตอนถัดไปในกระบวนการบีบอัด JPEG คือการลดขนาดช่องความอิ่มตัวของสี การลดขนาดจะลดความละเอียดของข้อมูลความอิ่มตัวของสี ซึ่งโดยทั่วไปจะไม่ส่งผลกระทบต่อคุณภาพของภาพที่รับรู้ได้อย่างมีนัยสำคัญ เนื่องจากดวงตาของมนุษย์มีความไวต่อรายละเอียดของสีน้อยกว่า ขั้นตอนนี้เป็นตัวเลือกและสามารถปรับได้ตามความสมดุลที่ต้องการระหว่างคุณภาพของภาพและขนาดไฟล์
หลังจากลดขนาดแล้ว ภาพจะถูกแบ่งออกเป็นบล็อก โดยปกติจะมีขนาด 8x8 พิกเซล จากนั้นแต่ละบล็อกจะถูกประมวลแยกกัน ขั้นตอนแรกในการประมวลผลแต่ละบล็อกคือการใช้ Discrete Cosine Transform (DCT) DCT เป็นการดำเนินการทางคณิตศาสตร์ที่แป ลงข้อมูลโดเมนเชิงพื้นที่ (ค่าพิกเซล) ไปเป็นโดเมนความถี่ ผลลัพธ์คือเมทริกซ์ของค่าสัมประสิทธิ์ความถี่ที่แสดงข้อมูลของบล็อกภาพในแง่ของส่วนประกอบความถี่เชิงพื้นที่
จากนั้นค่าสัมประสิทธิ์ความถี่ที่ได้จาก DCT จะถูกหาปริมาณ การหาปริมาณเป็นกระบวนการแมปชุดค่าอินพุตขนาดใหญ่ไปยังชุดที่เล็กลง ในกรณีของ JPEG หมายถึงการลดความแม่นยำของค่าสัมประสิทธิ์ความถี่ นี่คือจุดที่เกิดการสูญเสียข้อมูลในส่วนของการบีบอัด เนื่องจากข้อมูลภาพบางส่วนจะถูกละทิ้ง ขั้นตอนการหาปริมาณจะถูกควบคุมโดยตารางการหาปริมาณ ซึ่งกำหนดว่าจะใช้การบีบอัดกับส่วนประกอบความถี่แต่ละส่วนเท่าใด ตารางการหาปริมาณสามารถปรับได้เพื่อให้ได้คุณภาพของภาพที่สูงขึ้น (การบีบอัดน้อยลง) หรือขนาดไฟล์ที่เล็กลง (การบีบอัดมากขึ้น)
หลังจากการหาปริมาณ ค่าสัมประสิทธิ์ จะถูกจัดเรียงตามลำดับซิกแซก โดยเริ่มจากมุมซ้ายบนและทำตามรูปแบบที่ให้ความสำคัญกับส่วนประกอบความถี่ต่ำมากกว่าส่วนประกอบความถี่สูง นี่เป็นเพราะส่วนประกอบความถี่ต่ำ (ซึ่งแสดงส่วนที่สม่ำเสมอมากขึ้นของภาพ) มีความสำคัญต่อรูปลักษณ์โดยรวมมากกว่าส่วนประกอบความถี่สูง (ซึ่งแสดงรายละเอียดและขอบที่ละเอียดกว่า)
ขั้นตอนถัดไปในกระบวนการบีบอัด JPEG คือการเข้ารหัสเอนโทรปี ซึ่งเป็นวิธีการบีบอัดแบบไม่สูญเสียข้อมูล รูปแบบการเข้ารหัสเอนโทรปีที่ใช้กันทั่วไปที่สุดใน JPEG คือการเข้ารหัส Huffman แม้ว่าการเข้ารหัสเลขคณิตก็เป็นตัวเลือกเช่นกัน การเข้ารหัส Huffman ทำงานโดยกำหนดรหัสที่สั้นกว่าให้กับการเกิดขึ้นบ่อยกว่า และรหัสที่ยาวกว่าให้กับการเกิดขึ้นน้อยกว่า เนื่องจากการจัดลำดับแบบซิกแซกมีแนวโน้มที่จะจัดกลุ่มค่าสัมประสิทธิ์ความถี่ ที่คล้ายกันเข้าด้วยกัน จึงเพิ่มประสิทธิภาพของการเข้ารหัส Huffman
เมื่อการเข้ารหัสเอนโทรปีเสร็จสมบูรณ์ ข้อมูลที่บีบอัดจะถูกจัดเก็บในรูปแบบไฟล์ที่เป็นไปตามมาตรฐาน JPEG รูปแบบไฟล์นี้มีส่วนหัวที่มีข้อมูลเกี่ยวกับภาพ เช่น ขนาดและตารางการหาปริมาณที่ใช้ ตามด้วยข้อมูลภาพที่เข้ารหัส Huffman รูปแบบไฟล์ยังรองรับการรวมเมตาดาต้า เช่น ข้อมูล EXIF ซึ่งอาจมีข้อมูลเกี่ยวกับการตั้งค่ากล้องที่ใช้ในการถ่ายภาพ วันและเวลาที่ถ่าย และรายละเอียดอื่นๆ ที่เกี่ยวข้อง
เมื่อเปิดภาพ JPEG กระบวนการคลายการบีบอัดจะย้อนกลับขั้นตอนการบีบอัดโดยพื้นฐาน ข้อมูลที่เข้ารหัส Huffman จะถูกถอดรหัส ค่าสัมประสิทธิ์ความถี่ที่หาปริมาณแล้วจะถูกยกเลิกการหาปริมาณโดยใช้ตารางการหาปริมาณเดียวกันกับที่ใช้ในการบีบอัด และ Inverse Discrete Cosine Transform (IDCT) จะถูกนำไปใช้กับแต่ละบล็อกเพื่อแปลงข้อมูลโดเมนความถี่กลับเป็นค่าพิกเซลโดเมนเชิงพื้นที่
กระบวนการยกเลิกการหาปริมาณและ IDCT ก่อให้เกิดข้อผิดพลาดบางประการเนื่องจากลักษณะการสูญเสียข้อมูลของการบีบอัด ซึ่งเป็นสาเหตุที่ JPEG ไม่เหมาะสำหรับภาพที่จะมีการแก้ไขและบันทึกซ้ำหลายครั้ง ทุกครั้งที่มีการบันทึกภาพ JPEG ภาพนั้นจะผ่านกระบวนการบีบอัดอีกครั้ง และข้อมูลภาพเพิ่มเติมจะสูญหายไป สิ่งนี้อาจนำไปสู่การเสื่อมสภาพของภาพที่สังเกตเห็นได้ชัดเจนเมื่อเวลาผ่านไป ซึ่งเป็นปรากฏการณ์ที่เรียกว่า 'การสูญเสียรุ่น'
แม้ว่าการบีบอัด JPEG จะเป็นแบบสูญเสียข้อมูล แต่ก็ยังคงเป็นรูปแบบภาพที่นิยมเนื่องจากความยืดหยุ่นและประสิทธิภาพ ภาพ JPEG อาจมีขนาดไฟล์เล็กมาก ซึ่งทำให้เหมาะสำหรับการใช้งานบนเว็บ ซึ่งแบนด์วิดท์และเวลาในการโหลดเป็นสิ่งสำคัญ นอกจากนี้ มาตรฐาน JPEG ยังมีโหมดแบบก้าวหน้า ซึ่งช่วยให้สามารถเข้ารหัสภาพในลักษณะที่สามารถถอดรหัสได้หลายครั้ง โดยแต่ละครั้งจะปรับปรุงความละเอียดของภาพ สิ่งนี้มีประโยชน์อย่างยิ่งสำหรับภาพบนเว็บ เนื่องจากช่วยให้สามารถแสดงภาพคุณภาพต่ำได้อย่างรวดเร็ว โดยคุณภาพจะดีขึ้นเมื่อดาวน์โหลดข้อมูลเพิ่มเติม
JPEG ยังมีข้อจำกัดบางประการและไม่ใช่ตัวเลือกที่ดีที่สุดสำหรับภาพทุกประเภท ตัวอย่างเช่น ไม่เหมาะสำหรับภาพที่มีขอบคมหรือข้อความที่มีคอนทราสต์สูง เนื่องจากการบีบอัดอาจสร้างสิ่งประดิษฐ์ที่สังเกตเห็นได้รอบๆ บริเวณเหล่านี้ นอกจากนี้ JPEG ไม่รองรับความโปร่งใส ซึ่งเป็นคุณสมบัติที่มีให้โดยรูปแบบอื่นๆ เช่น PNG และ GIF
เพื่อแก้ไขข้อจำกัดบางประการของมาตรฐาน JPEG เดิม จึงมีการพัฒนาฟอร์แมตใหม่ เช่น JPEG 2000 และ JPEG XR ฟอร์แมตเหล่านี้ให้ประสิทธิภาพการบีบอัดที่ดีขึ้น รองรับความลึกของบิตที่สูงขึ้น และคุณสมบัติเพิ่มเติม เช่น ความโปร่งใสและการบีบอัดแบบไม่สูญเสียข้อมูล อย่างไรก็ตาม พวกเขายังไม่ได้รับการยอมรับอย่างแพร่หลายในระดับเดียวกับรูปแบบ JPEG เดิม
สรุปแล้ว รูปแบบภาพ JPEG เป็นการผสมผสานที่ซับซ้อนของคณิตศาสตร์ จิตวิทยาด้านการมองเห็นของมนุษย์ และวิทยาการคอมพิวเตอร์ การใช้งานอย่างแพร่หลายเป็นเครื่องพิสูจน์ถึงประสิทธิภาพในการลดขนาดไฟล์ในขณะที่ยังคงรักษาคุณภาพของภาพในระดับที่ยอมรับได้สำหรับแอปพลิเคชันส่วนใหญ่ ความเข้าใจในแง่เทคนิคของ JPEG สามารถช่วยให้ผู้ใช้ตัดสินใจได้อย่างชาญฉลาดว่าจะใช้รูปแบบนี้เมื่อใด และจะปรับแต่งภาพของตนอย่างไรเพื่อให้ได้ความสมดุลระหว่างคุณภาพและขนาดไฟล์ที่เหมาะกับความต้องการของตนมากที่สุด
ตัวแปลงนี้ทำงานทั้งหมดในเบราว์เซอร์ของคุณ เมื่อคุณเลือก ไฟล์ มันจะถูกอ่านเข้าสู่หน่วยความจำและแปลงเป็นรูปแบบที่เลือก คุณสามารถดาวน์โหลดไฟล์ที่แปลงแล้วได ้.
การแปลงเริ่มทันที และไฟล์ส่วนใหญ่ถูกแปลงใน ภายใต้วินาที ไฟล์ขนาดใหญ่อาจใช้เวลานานขึ้น.
ไฟล์ของคุณไม่เคยถูกอัปโหลดไปยังเซิร์ฟเวอร์ของเรา พวกเขา ถูกแปลงในเบราว์เซอร์ของคุณ และไฟล์ที่แปลงแล้วจากนั้น ดาวน์โหลด เราไม่เคยเห็นไฟล์ของคุณ.
เราสนับสนุนการแปลงระหว่างทุกรูปแบบภาพ รวมถึง JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, และอื่น ๆ อีกมากมาย.
ตัวแปลงนี้เป็นฟรีและจะเป็นฟรีตลอดไป เนื่องจากมันทำงานในเบราว์เซอร์ของคุณ เราไม่ต้องจ่ายเงินสำหรับ เซิร์ฟเวอร์ ดังนั้นเราไม่จำเป็นต้องเรียกเก็บค่าใช้จ่ ายจากคุณ.
ใช่! คุณสามารถแปลงไฟล์เท่าที่คุณต้องการในครั้งเดียว แค่ เลือกไฟล์หลายไฟล์เมื่อคุณเพิ่มพวกเขา.