แปลง JPGs เป็น JPEGs

ไม่จำกัด การแปลง. ขนาดไฟล์สูงสุด 2.5GB. ฟรีตลอดไป.

ทั้งหมดในท้องถิ่น

ตัวแปลงของเราทำงานในเบราว์เซอร์ของคุณ ดังนั้นเราจึงไม่เห็นข้อมูลของคุณ.

เร็วแสง

ไม่ต้องอัปโหลดไฟล์ของคุณไปยังเซิร์ฟเวอร์ - การแปลงเริ่มทันที.

ปลอดภัยโดยค่าเริ่มต้น

ไม่เหมือนกับตัวแปลงอื่น ๆ ไฟล์ของคุณไม่เคยถูกอัปโหลดไปยังเรา.

รูปแบบ JPG คืออะไร?

รูปแบบ JFIF ของกลุ่มผู้เชี่ยวชาญด้านภาพร่วม

รูปแบบ JPEG 2000 Multi-layer (JPM) เป็นส่วนขยายของมาตรฐาน JPEG 2000 ซึ่งเป็นมาตรฐานการบีบอัดภาพและระบบการเข้ารหัส สร้างขึ้นโดยคณะกรรมการ Joint Photographic Experts Group ในปี 2000 โดยมีจุดประสงค์เพื่อแทนที่มาตรฐาน JPEG เดิม JPEG 2000 เป็นที่รู้จักในเรื่องประสิทธิภาพการบีบอัดสูงและความสามารถในการจัดการกับภาพประเภทต่างๆ ได้หลากหลาย รวมถึงภาพสีเทา สี และภาพหลายส่วน รูปแบบ JPM ขยายขีดความสามารถของ JPEG 2000 โดยเฉพาะเพื่อรองรับเอกสารประกอบ ซึ่งอาจประกอบด้วยข้อความ กราฟิก และรูปภาพ

JPM ถูกกำหนดไว้ในส่วนที่ 6 ของ JPEG 2000 Suite (ISO/IEC 15444-6) และออกแบบมาเพื่อรวมภาพหลายภาพและข้อมูลที่เกี่ยวข้องไว้ในไฟล์เดียว ซึ่งทำให้มีประโยชน์อย่างยิ่งสำหรับแอปพลิเคชันต่างๆ เช่น การถ่ายภาพเอกสาร การถ่ายภาพทางการแพทย์ และการถ่ายภาพทางเทคนิค ซึ่งจำเป็นต้องจัดเก็บเนื้อหาประเภทต่างๆ ไว้ด้วยกัน รูปแบบ JPM ช่วยให้จัดเก็บหน้าต่างๆ ภายในเอกสารได้อย่างมีประสิทธิภาพ โดยแต่ละหน้าสามารถมีพื้นที่ภาพหลายพื้นที่ที่มีลักษณะแตกต่างกัน รวมถึงข้อมูลที่ไม่ใช่ภาพ เช่น คำอธิบายประกอบหรือข้อมูลเมตา

หนึ่งในคุณสมบัติหลักของ JPM คือการใช้ JPEG 2000 code stream (JPX) ซึ่งเป็นเวอร์ชันที่ขยายจาก JPEG 2000 code stream (JP2) พื้นฐาน JPX รองรับช่วงของพื้นที่สีที่กว้างกว่า ข้อมูลเมตาที่ซับซ้อนกว่า และความลึกของบิตที่สูงกว่า ในไฟล์ JPM แต่ละภาพหรือ 'เลเยอร์' จะถูกจัดเก็บเป็น JPX code stream แยกต่างหาก ซึ่งช่วยให้แต่ละเลเยอร์ถูกบีบอัดตามลักษณะเฉพาะของตนเอง ซึ่งอาจนำไปสู่การบีบอัดที่มีประสิทธิภาพมากขึ้นและผลลัพธ์ที่มีคุณภาพสูงขึ้น โดยเฉพาะอย่างยิ่งสำหรับเอกสารประกอบที่มีประเภทเนื้อหาที่หลากหลาย

โครงสร้างของไฟล์ JPM เป็นแบบลำดับชั้นและประกอบด้วยกล่องชุดหนึ่ง กล่องเป็นหน่วยที่แยกตัวได้ซึ่งรวมถึงส่วนหัวและข้อมูล ส่วนหัวระบุชนิดและความยาวของกล่อง ในขณะที่ข้อมูลมีเนื้อหาจริง กล่องระดับบนสุดในไฟล์ JPM คือกล่องลายเซ็น ซึ่งระบุไฟล์ว่าเป็นไฟล์ตระกูล JPEG 2000 หลังจากกล่องลายเซ็นแล้ว จะมีกล่องชนิดไฟล์ กล่องส่วนหัว และกล่องเนื้อหา เป็นต้น กล่องส่วนหัวมีข้อมูลเกี่ยวกับไฟล์ เช่น จำนวนหน้าและแอตทริบิวต์ของแต่ละหน้า ในขณะที่กล่องเนื้อหาประกอบด้วยข้อมูลภาพและข้อมูลที่ไม่ใช่ภาพที่เกี่ยวข้อง

ในแง่ของการบีบอัด ไฟล์ JPM สามารถใช้ทั้งวิธีการบีบอัดแบบไม่สูญเสียและแบบสูญเสีย การบีบอัดแบบไม่สูญเสียช่วยให้มั่นใจได้ว่าข้อมูลภาพต้นฉบับสามารถสร้างขึ้นใหม่ได้อย่างสมบูรณ์แบบจากข้อมูลที่บีบอัด ซึ่งมีความสำคัญอย่างยิ่งสำหรับแอปพลิเคชันที่ความสมบูรณ์ของภาพมีความสำคัญสูงสุด เช่น การถ่ายภาพทางการแพทย์ ในทางกลับกัน การบีบอัดแบบสูญเสียช่วยให้มีขนาดไฟล์เล็กลงโดยการละทิ้งข้อมูลภาพบางส่วน ซึ่งอาจเป็นที่ยอมรับได้ในสถานการณ์ที่ไม่ต้องการความเที่ยงตรงที่สมบูรณ์แบบ

JPM ยังรองรับแนวคิดของ 'การถอดรหัสแบบก้าวหน้า' ซึ่งหมายความว่าสามารถแสดงภาพเวอร์ชันความละเอียดต่ำได้ในขณะที่ยังดาวน์โหลดหรือประมวลผลภาพความละเอียดเต็มอยู่ ซึ่งมีประโยชน์อย่างยิ่งสำหรับภาพขนาดใหญ่หรือการเชื่อมต่อเครือข่ายที่ช้า เนื่องจากช่วยให้ผู้ใช้สามารถดูตัวอย่างได้อย่างรวดเร็วโดยไม่ต้องรอให้ไฟล์ทั้งหมดพร้อมใช้งาน

อีกแง่มุมที่สำคัญของ JPM คือการรองรับข้อมูลเมตา ข้อมูลเมตาในไฟล์ JPM อาจรวมถึงข้อมูลเกี่ยวกับเอกสาร เช่น ผู้แต่ง ชื่อเรื่อง และคำหลัก รวมถึงข้อมูลเกี่ยวกับแต่ละภาพ เช่น วันที่ถ่าย ภาพการตั้งค่ากล้อง และตำแหน่งทางภูมิศาสตร์ ข้อมูลเมตานี้สามารถจัดเก็บในรูปแบบ XML ทำให้เข้าถึงและแก้ไขได้ง่าย นอกจากนี้ JPM ยังรองรับการรวมโปรไฟล์ ICC ซึ่งกำหนดพื้นที่สีของภาพ เพื่อให้แน่ใจว่าการแสดงสีที่ถูกต้องบนอุปกรณ์ต่างๆ

ไฟล์ JPM ยังสามารถจัดเก็บภาพหลายเวอร์ชันได้ โดยแต่ละเวอร์ชันมีความละเอียดหรือการตั้งค่าคุณภาพที่แตกต่างกัน คุณสมบัตินี้เรียกว่า 'การแบ่งเลเยอร์' ช่วยให้จัดเก็บและส่งข้อมูลได้อย่างมีประสิทธิภาพมากขึ้น เนื่องจากสามารถเลือกเวอร์ชันที่เหมาะสมของภาพได้ตามความต้องการเฉพาะของแอปพลิเคชันหรือแบนด์วิดท์ที่มี

ความปลอดภัยเป็นอีกด้านหนึ่งที่ JPM มีคุณสมบัติที่แข็งแกร่ง รูปแบบนี้รองรับการรวมลายเซ็นดิจิทัลและการเข้ารหัส ซึ่งสามารถใช้เพื่อตรวจสอบความถูกต้องของเอกสารและปกป้องข้อมูลที่ละเอียดอ่อน ซึ่งมีความสำคัญอย่างยิ่งในสาขาต่างๆ เช่น การจัดการเอกสารทางกฎหมายและการแพทย์ ซึ่งความสมบูรณ์และความลับของเอกสารมีความสำคัญสูงสุด

แม้จะมีข้อดีมากมาย แต่รูปแบบ JPM ก็ยังไม่ได้รับการยอมรับอย่างกว้างขวาง โดยเฉพาะในตลาดผู้บริโภค สาเหตุหนึ่งเป็นเพราะความซับซ้อนของรูปแบบและทรัพยากรการคำนวณที่จำเป็นในการประมวลผลไฟล์ JPM นอกจากนี้ มาตรฐานตระกูล JPEG 2000 รวมถึง JPM ยังมีปัญหาเรื่องการออกใบอนุญาตสิทธิบัตร ซึ่งเป็นอุปสรรคต่อการนำไปใช้เมื่อเปรียบเทียบกับมาตรฐาน JPEG เดิม ซึ่งโดยทั่วไปจะไม่มีสิทธิบัตร

สำหรับนักพัฒนาซอฟต์แวร์และวิศวกรที่ทำงานกับไฟล์ JPM มีไลบรารีและเครื่องมือต่างๆ ที่รองรับรูปแบบนี้ ได้แก่ ไลบรารี OpenJPEG ซึ่งเป็นตัวแปลงสัญญาณ JPEG 2000 แบบโอเพนซอร์ส และผลิตภัณฑ์เชิงพาณิชย์จากบริษัทซอฟต์แวร์ด้านการถ่ายภาพต่างๆ เมื่อทำงานกับไฟล์ JPM นักพัฒนาต้องมีความคุ้นเคยกับไวยากรณ์ของ JPEG 2000 code stream รวมถึงข้อกำหนดเฉพาะสำหรับการจัดการเอกสารประกอบและข้อมูลเมตา

สรุปแล้ว รูปแบบภาพ JPM เป็นส่วนขยายที่มีประสิทธิภาพของมาตรฐาน JPEG 2000 ซึ่งมีคุณสมบัติหลากหลายที่เหมาะสำหรับการจัดเก็บและจัดการเอกสารประกอบ การรองรับเลเยอร์ภาพหลายเลเยอร์ การถอดรหัสแบบก้าวหน้า ข้อมูลเมตา การแบ่งเลเยอร์ และคุณสมบัติด้านความปลอดภัย ทำให้เป็นตัวเลือกที่เหมาะสำหรับแอปพลิเคชันระดับมืออาชีพและทางเทคนิคที่คุณภาพของภาพและความสมบูรณ์ของเอกสารมีความสำคัญ แม้ว่าอาจไม่ได้ใช้กันอย่างแพร่หลายเหมือนรูปแบบภาพอื่นๆ แต่ความสามารถเฉพาะทางก็ทำให้ยังคงเป็นเครื่องมือสำคัญในสาขาต่างๆ เช่น การถ่ายภาพเอกสารและการถ่ายภาพทางการแพทย์

รูปแบบ JPEG คืออะไร?

รูปแบบ JFIF ของกลุ่มผู้เชี่ยวชาญด้านภาพร่วม

JPEG ซึ่งย่อมาจาก Joint Photographic Experts Group เป็นวิธีการบีบอัดแบบสูญเสียข้อมูลที่ใช้กันทั่วไปสำหรับภาพดิจิทัล โดยเฉพาะอย่างยิ่งสำหรับภาพที่ถ่ายด้วยกล้องดิจิทัล ระดับการบีบอัดสามารถปรับได้ ซึ่งช่วยให้สามารถเลือกการแลกเปลี่ยนระหว่างขนาดที่จัดเก็บและคุณภาพของภาพได้ JPEG มักจะบรรลุการบีบอัด 10:1 โดยสูญเสียคุณภาพของภาพเพียงเล็กน้อย

อัลกอริทึมการบีบอัด JPEG เป็นหัวใจหลักของมาตรฐาน JPEG กระบวนการเริ่มต้นด้วยการแปลงภาพดิจิทัลจากพื้นที่สี RGB ทั่วไปไปเป็นพื้นที่สีอื่นที่เรียกว่า YCbCr พื้นที่สี YCbCr แยกภาพออกเป็นความสว่าง (Y) ซึ่งแสดงระดับความสว่าง และความอิ่มตัวของสี (Cb และ Cr) ซึ่งแสดงข้อมูลสี การแยกนี้เป็นประโยชน์เพราะดวงตาของมนุษย์มีความไวต่อการเปลี่ยนแปลงของความสว่างมากกว่าสี ซึ่งช่วยให้การบีบอัดสามารถใช้ประโยชน์จากสิ่งนี้ได้โดยการบีบอัดข้อมูลสีมากกว่าความสว่าง

เมื่อภาพอยู่ในพื้นที่สี YCbCr ขั้นตอนถัดไปในกระบวนการบีบอัด JPEG คือการลดขนาดช่องความอิ่มตัวของสี การลดขนาดจะลดความละเอียดของข้อมูลความอิ่มตัวของสี ซึ่งโดยทั่วไปจะไม่ส่งผลกระทบต่อคุณภาพของภาพที่รับรู้ได้อย่างมีนัยสำคัญ เนื่องจากดวงตาของมนุษย์มีความไวต่อรายละเอียดของสีน้อยกว่า ขั้นตอนนี้เป็นตัวเลือกและสามารถปรับได้ตามความสมดุลที่ต้องการระหว่างคุณภาพของภาพและขนาดไฟล์

หลังจากลดขนาดแล้ว ภาพจะถูกแบ่งออกเป็นบล็อก โดยปกติจะมีขนาด 8x8 พิกเซล จากนั้นแต่ละบล็อกจะถูกประมวลแยกกัน ขั้นตอนแรกในการประมวลผลแต่ละบล็อกคือการใช้ Discrete Cosine Transform (DCT) DCT เป็นการดำเนินการทางคณิตศาสตร์ที่แปลงข้อมูลโดเมนเชิงพื้นที่ (ค่าพิกเซล) ไปเป็นโดเมนความถี่ ผลลัพธ์คือเมทริกซ์ของค่าสัมประสิทธิ์ความถี่ที่แสดงข้อมูลของบล็อกภาพในแง่ของส่วนประกอบความถี่เชิงพื้นที่

จากนั้นค่าสัมประสิทธิ์ความถี่ที่ได้จาก DCT จะถูกหาปริมาณ การหาปริมาณเป็นกระบวนการแมปชุดค่าอินพุตขนาดใหญ่ไปยังชุดที่เล็กลง ในกรณีของ JPEG หมายถึงการลดความแม่นยำของค่าสัมประสิทธิ์ความถี่ นี่คือจุดที่เกิดการสูญเสียข้อมูลในส่วนของการบีบอัด เนื่องจากข้อมูลภาพบางส่วนจะถูกละทิ้ง ขั้นตอนการหาปริมาณจะถูกควบคุมโดยตารางการหาปริมาณ ซึ่งกำหนดว่าจะใช้การบีบอัดกับส่วนประกอบความถี่แต่ละส่วนเท่าใด ตารางการหาปริมาณสามารถปรับได้เพื่อให้ได้คุณภาพของภาพที่สูงขึ้น (การบีบอัดน้อยลง) หรือขนาดไฟล์ที่เล็กลง (การบีบอัดมากขึ้น)

หลังจากการหาปริมาณ ค่าสัมประสิทธิ์จะถูกจัดเรียงตามลำดับซิกแซก โดยเริ่มจากมุมซ้ายบนและทำตามรูปแบบที่ให้ความสำคัญกับส่วนประกอบความถี่ต่ำมากกว่าส่วนประกอบความถี่สูง นี่เป็นเพราะส่วนประกอบความถี่ต่ำ (ซึ่งแสดงส่วนที่สม่ำเสมอมากขึ้นของภาพ) มีความสำคัญต่อรูปลักษณ์โดยรวมมากกว่าส่วนประกอบความถี่สูง (ซึ่งแสดงรายละเอียดและขอบที่ละเอียดกว่า)

ขั้นตอนถัดไปในกระบวนการบีบอัด JPEG คือการเข้ารหัสเอนโทรปี ซึ่งเป็นวิธีการบีบอัดแบบไม่สูญเสียข้อมูล รูปแบบการเข้ารหัสเอนโทรปีที่ใช้กันทั่วไปที่สุดใน JPEG คือการเข้ารหัส Huffman แม้ว่าการเข้ารหัสเลขคณิตก็เป็นตัวเลือกเช่นกัน การเข้ารหัส Huffman ทำงานโดยกำหนดรหัสที่สั้นกว่าให้กับการเกิดขึ้นบ่อยกว่า และรหัสที่ยาวกว่าให้กับการเกิดขึ้นน้อยกว่า เนื่องจากการจัดลำดับแบบซิกแซกมีแนวโน้มที่จะจัดกลุ่มค่าสัมประสิทธิ์ความถี่ที่คล้ายกันเข้าด้วยกัน จึงเพิ่มประสิทธิภาพของการเข้ารหัส Huffman

เมื่อการเข้ารหัสเอนโทรปีเสร็จสมบูรณ์ ข้อมูลที่บีบอัดจะถูกจัดเก็บในรูปแบบไฟล์ที่เป็นไปตามมาตรฐาน JPEG รูปแบบไฟล์นี้มีส่วนหัวที่มีข้อมูลเกี่ยวกับภาพ เช่น ขนาดและตารางการหาปริมาณที่ใช้ ตามด้วยข้อมูลภาพที่เข้ารหัส Huffman รูปแบบไฟล์ยังรองรับการรวมเมตาดาต้า เช่น ข้อมูล EXIF ซึ่งอาจมีข้อมูลเกี่ยวกับการตั้งค่ากล้องที่ใช้ในการถ่ายภาพ วันและเวลาที่ถ่าย และรายละเอียดอื่นๆ ที่เกี่ยวข้อง

เมื่อเปิดภาพ JPEG กระบวนการคลายการบีบอัดจะย้อนกลับขั้นตอนการบีบอัดโดยพื้นฐาน ข้อมูลที่เข้ารหัส Huffman จะถูกถอดรหัส ค่าสัมประสิทธิ์ความถี่ที่หาปริมาณแล้วจะถูกยกเลิกการหาปริมาณโดยใช้ตารางการหาปริมาณเดียวกันกับที่ใช้ในการบีบอัด และ Inverse Discrete Cosine Transform (IDCT) จะถูกนำไปใช้กับแต่ละบล็อกเพื่อแปลงข้อมูลโดเมนความถี่กลับเป็นค่าพิกเซลโดเมนเชิงพื้นที่

กระบวนการยกเลิกการหาปริมาณและ IDCT ก่อให้เกิดข้อผิดพลาดบางประการเนื่องจากลักษณะการสูญเสียข้อมูลของการบีบอัด ซึ่งเป็นสาเหตุที่ JPEG ไม่เหมาะสำหรับภาพที่จะมีการแก้ไขและบันทึกซ้ำหลายครั้ง ทุกครั้งที่มีการบันทึกภาพ JPEG ภาพนั้นจะผ่านกระบวนการบีบอัดอีกครั้ง และข้อมูลภาพเพิ่มเติมจะสูญหายไป สิ่งนี้อาจนำไปสู่การเสื่อมสภาพของภาพที่สังเกตเห็นได้ชัดเจนเมื่อเวลาผ่านไป ซึ่งเป็นปรากฏการณ์ที่เรียกว่า 'การสูญเสียรุ่น'

แม้ว่าการบีบอัด JPEG จะเป็นแบบสูญเสียข้อมูล แต่ก็ยังคงเป็นรูปแบบภาพที่นิยมเนื่องจากความยืดหยุ่นและประสิทธิภาพ ภาพ JPEG อาจมีขนาดไฟล์เล็กมาก ซึ่งทำให้เหมาะสำหรับการใช้งานบนเว็บ ซึ่งแบนด์วิดท์และเวลาในการโหลดเป็นสิ่งสำคัญ นอกจากนี้ มาตรฐาน JPEG ยังมีโหมดแบบก้าวหน้า ซึ่งช่วยให้สามารถเข้ารหัสภาพในลักษณะที่สามารถถอดรหัสได้หลายครั้ง โดยแต่ละครั้งจะปรับปรุงความละเอียดของภาพ สิ่งนี้มีประโยชน์อย่างยิ่งสำหรับภาพบนเว็บ เนื่องจากช่วยให้สามารถแสดงภาพคุณภาพต่ำได้อย่างรวดเร็ว โดยคุณภาพจะดีขึ้นเมื่อดาวน์โหลดข้อมูลเพิ่มเติม

JPEG ยังมีข้อจำกัดบางประการและไม่ใช่ตัวเลือกที่ดีที่สุดสำหรับภาพทุกประเภท ตัวอย่างเช่น ไม่เหมาะสำหรับภาพที่มีขอบคมหรือข้อความที่มีคอนทราสต์สูง เนื่องจากการบีบอัดอาจสร้างสิ่งประดิษฐ์ที่สังเกตเห็นได้รอบๆ บริเวณเหล่านี้ นอกจากนี้ JPEG ไม่รองรับความโปร่งใส ซึ่งเป็นคุณสมบัติที่มีให้โดยรูปแบบอื่นๆ เช่น PNG และ GIF

เพื่อแก้ไขข้อจำกัดบางประการของมาตรฐาน JPEG เดิม จึงมีการพัฒนาฟอร์แมตใหม่ เช่น JPEG 2000 และ JPEG XR ฟอร์แมตเหล่านี้ให้ประสิทธิภาพการบีบอัดที่ดีขึ้น รองรับความลึกของบิตที่สูงขึ้น และคุณสมบัติเพิ่มเติม เช่น ความโปร่งใสและการบีบอัดแบบไม่สูญเสียข้อมูล อย่างไรก็ตาม พวกเขายังไม่ได้รับการยอมรับอย่างแพร่หลายในระดับเดียวกับรูปแบบ JPEG เดิม

สรุปแล้ว รูปแบบภาพ JPEG เป็นการผสมผสานที่ซับซ้อนของคณิตศาสตร์ จิตวิทยาด้านการมองเห็นของมนุษย์ และวิทยาการคอมพิวเตอร์ การใช้งานอย่างแพร่หลายเป็นเครื่องพิสูจน์ถึงประสิทธิภาพในการลดขนาดไฟล์ในขณะที่ยังคงรักษาคุณภาพของภาพในระดับที่ยอมรับได้สำหรับแอปพลิเคชันส่วนใหญ่ ความเข้าใจในแง่เทคนิคของ JPEG สามารถช่วยให้ผู้ใช้ตัดสินใจได้อย่างชาญฉลาดว่าจะใช้รูปแบบนี้เมื่อใด และจะปรับแต่งภาพของตนอย่างไรเพื่อให้ได้ความสมดุลระหว่างคุณภาพและขนาดไฟล์ที่เหมาะกับความต้องการของตนมากที่สุด

รูปแบบที่รองรับ

AAI.aai

ภาพ AAI Dune

AI.ai

Adobe Illustrator CS2

AVIF.avif

รูปแบบไฟล์ภาพ AV1

AVS.avs

ภาพ AVS X

BAYER.bayer

ภาพ Bayer ดิบ

BMP.bmp

ภาพ bitmap ของ Microsoft Windows

CIN.cin

ไฟล์ภาพ Cineon

CLIP.clip

Image Clip Mask

CMYK.cmyk

ตัวอย่างสีฟ้า, สีแม่จัน, สีเหลือง, และสีดำดิบ

CMYKA.cmyka

ตัวอย่างสีฟ้า, สีแม่จัน, สีเหลือง, สีดำ, และ alpha ดิบ

CUR.cur

ไอคอนของ Microsoft

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

ภาพ SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

รูปแบบเอกสารพกพาที่มีการหุ้มห่อ

EPI.epi

รูปแบบการแลกเปลี่ยน PostScript ที่มีการหุ้มห่อของ Adobe

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

รูปแบบการแลกเปลี่ยน PostScript ที่มีการหุ้มห่อของ Adobe

EPT.ept

PostScript ที่มีการหุ้มห่อพร้อมตัวอย่าง TIFF

EPT2.ept2

ระดับ PostScript ที่มีการหุ้มห่อ II พร้อมตัวอย่าง TIFF

EXR.exr

ภาพที่มีช่วงไดนามิกสูง (HDR)

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

ระบบการขนส่งภาพที่ยืดหยุ่น

GIF.gif

รูปแบบการแลกเปลี่ยนกราฟิกของ CompuServe

GIF87.gif87

รูปแบบการแลกเปลี่ยนกราฟิกของ CompuServe (เวอร์ชัน 87a)

GROUP4.group4

CCITT Group4 ดิบ

HDR.hdr

ภาพที่มีช่วงไดนามิกสูง

HRZ.hrz

Slow Scan TeleVision

ICO.ico

ไอคอนของ Microsoft

ICON.icon

ไอคอนของ Microsoft

IPL.ipl

ภาพ IP2 Location

J2C.j2c

codestream JPEG-2000

J2K.j2k

codestream JPEG-2000

JNG.jng

กราฟิกเครือข่าย JPEG

JP2.jp2

รูปแบบไฟล์ JPEG-2000

JPC.jpc

codestream JPEG-2000

JPE.jpe

รูปแบบ JFIF ของกลุ่มผู้เชี่ยวชาญด้านภาพร่วม

JPEG.jpeg

รูปแบบ JFIF ของกลุ่มผู้เชี่ยวชาญด้านภาพร่วม

JPG.jpg

รูปแบบ JFIF ของกลุ่มผู้เชี่ยวชาญด้านภาพร่วม

JPM.jpm

รูปแบบไฟล์ JPEG-2000

JPS.jps

รูปแบบ JPS ของกลุ่มผู้เชี่ยวชาญด้านภาพร่วม

JPT.jpt

รูปแบบไฟล์ JPEG-2000

JXL.jxl

ภาพ JPEG XL

MAP.map

ฐานข้อมูลภาพที่ไม่มีรอยต่อและมีความละเอียดหลายระดับ (MrSID)

MAT.mat

รูปแบบภาพ MATLAB level 5

PAL.pal

พิกซ์แมป Palm

PALM.palm

พิกซ์แมป Palm

PAM.pam

รูปแบบบิตแมป 2 มิติทั่วไป

PBM.pbm

รูปแบบบิตแมปพกพา (ขาวและดำ)

PCD.pcd

Photo CD

PCDS.pcds

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

รูปแบบ ImageViewer ฐานข้อมูล Palm

PDF.pdf

รูปแบบเอกสารพกพา

PDFA.pdfa

รูปแบบเอกสารเก็บถาวร

PFM.pfm

รูปแบบลอยพกพา

PGM.pgm

รูปแบบกรายแมปพกพา (สเกลเทา)

PGX.pgx

รูปแบบไม่บีบอัด JPEG 2000

PICON.picon

ไอคอนส่วนบุคคล

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

รูปแบบ JFIF ของกลุ่มผู้เชี่ยวชาญด้านภาพถ่ายร่วม

PNG.png

กราฟิกเครือข่ายพกพา

PNG00.png00

PNG สืบทอดความลึกบิต, ประเภทสีจากรูปภาพเดิม

PNG24.png24

RGB 24 บิตที่ไม่โปร่งใสหรือโปร่งใสแบบไบนารี (zlib 1.2.11)

PNG32.png32

RGBA 32 บิตที่ไม่โปร่งใสหรือโปร่งใสแบบไบนารี

PNG48.png48

RGB 48 บิตที่ไม่โปร่งใสหรือโปร่งใสแบบไบนารี

PNG64.png64

RGBA 64 บิตที่ไม่โปร่งใสหรือโปร่งใสแบบไบนารี

PNG8.png8

8 บิตที่ไม่โปร่งใสหรือโปร่งใสแบบไบนารี

PNM.pnm

anymap พกพา

PPM.ppm

รูปแบบพิกซ์แมปพกพา (สี)

PS.ps

ไฟล์ Adobe PostScript

PSB.psb

รูปแบบเอกสารขนาดใหญ่ของ Adobe

PSD.psd

บิตแมป Adobe Photoshop

RGB.rgb

ตัวอย่างสีแดง, สีเขียว, และสีน้ำเงินดิบ

RGBA.rgba

ตัวอย่างสีแดง, สีเขียว, สีน้ำเงิน, และสีอัลฟาดิบ

RGBO.rgbo

ตัวอย่างสีแดง, สีเขียว, สีน้ำเงิน, และความทึบดิบ

SIX.six

รูปแบบกราฟิก DEC SIXEL

SUN.sun

Sun Rasterfile

SVG.svg

กราฟิกเวกเตอร์ขนาดยืดหยุ่น

SVGZ.svgz

กราฟิกเวกเตอร์ขนาดยืดหยุ่นที่บีบอัด

TIFF.tiff

รูปแบบไฟล์ภาพที่มีแท็ก

VDA.vda

ภาพ Truevision Targa

VIPS.vips

ภาพ VIPS

WBMP.wbmp

ภาพ Bitmap ไร้สาย (ระดับ 0)

WEBP.webp

รูปแบบภาพ WebP

YUV.yuv

CCIR 601 4:1:1 หรือ 4:2:2

คำถามที่ถามบ่อย

การทำงานนี้ทำงานอย่างไร?

ตัวแปลงนี้ทำงานทั้งหมดในเบราว์เซอร์ของคุณ เมื่อคุณเลือก ไฟล์ มันจะถูกอ่านเข้าสู่หน่วยความจำและแปลงเป็นรูปแบบที่เลือก คุณสามารถดาวน์โหลดไฟล์ที่แปลงแล้วได้.

ใช้เวลานานแค่ไหนในการแปลงไฟล์?

การแปลงเริ่มทันที และไฟล์ส่วนใหญ่ถูกแปลงใน ภายใต้วินาที ไฟล์ขนาดใหญ่อาจใช้เวลานานขึ้น.

ไฟล์ของฉันเกิดอะไรขึ้น?

ไฟล์ของคุณไม่เคยถูกอัปโหลดไปยังเซิร์ฟเวอร์ของเรา พวกเขา ถูกแปลงในเบราว์เซอร์ของคุณ และไฟล์ที่แปลงแล้วจากนั้น ดาวน์โหลด เราไม่เคยเห็นไฟล์ของคุณ.

ฉันสามารถแปลงประเภทไฟล์อะไรได้?

เราสนับสนุนการแปลงระหว่างทุกรูปแบบภาพ รวมถึง JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, และอื่น ๆ อีกมากมาย.

ค่าใช้จ่ายนี้เท่าไหร่?

ตัวแปลงนี้เป็นฟรีและจะเป็นฟรีตลอดไป เนื่องจากมันทำงานในเบราว์เซอร์ของคุณ เราไม่ต้องจ่ายเงินสำหรับ เซิร์ฟเวอร์ ดังนั้นเราไม่จำเป็นต้องเรียกเก็บค่าใช้จ่ายจากคุณ.

ฉันสามารถแปลงไฟล์หลายไฟล์พร้อมกันได้หรือไม่?

ใช่! คุณสามารถแปลงไฟล์เท่าที่คุณต้องการในครั้งเดียว แค่ เลือกไฟล์หลายไฟล์เมื่อคุณเพิ่มพวกเขา.