PAM Background Remover

Remove backgrounds from any image in your browser. For free, forever.

All local

Our converter runs in your browser, so we never see your data.

Blazing fast

No uploading your files to a server—conversions start instantly.

Secure by default

Unlike other converters, your files are never uploaded to us.

Image background removal refers to the process of eliminating or altering the backdrop of an image while retaining the principal or intended subject. This technique can significantly enhance the subject's prominence and users often apply it in photography, graphic design, e-commerce, and marketing.

Background removal is a potent technique used to highlight the subject of a photo more effectively. E-commerce websites frequently use this to remove unwanted or messy backgrounds from product images, making the product the sole focus of the viewer. Similarly, graphic designers use this method to isolate subjects for use in composite designs, collages, or with various other backgrounds.

There are several methods for background removal, depending on the complexity of the image and the skills and tools available to the user. Most common methods include the use of software tools like Photoshop, GIMP, or specialized background removing software. The most common techniques include use of Magic Wand tool, Quick Selection tool, or Pen tool for manual outlining. For complex images, tools such as channel masks or background eraser can be used.

Given the advancements in AI and machine learning technologies, automatic background removal has become increasingly efficient and precise. Advanced algorithms can accurately differentiate subjects from the background, even in complex images, and remove the backdrop without human intervention. This capability is not only a significant time-saver but also opens up possibilities for users without advanced skills in graphic editing software.

Image background removal is no longer a complex and time-consuming task exclusive to professionals. It is a powerful tool to direct viewer attention, create clean and professional images, and facilitate a multitude of creative possibilities. With the continuously expanding possibilities of AI, this space offers exciting potential for innovations.

What is the PAM format?

Common 2-dimensional bitmap format

The PAM (Portable Arbitrary Map) image format is a relatively less known member of the family of image file formats designed under the umbrella of the Netpbm project. It is a highly flexible format that can represent a wide range of image types with different depths and types of pixel data. PAM is essentially an extension of the earlier PBM (Portable Bitmap), PGM (Portable Graymap), and PPM (Portable Pixmap) formats, collectively known as the PNM (Portable Any Map) formats, which were designed for simplicity and ease of use at the expense of features and compression. PAM was introduced to overcome the limitations of these formats while maintaining their simplicity and ease of use.

The PAM format is designed to be device and platform-independent, which means that images saved in this format can be opened and manipulated on any system without concern for compatibility issues. This is achieved by storing image data in a plain-text or binary format that can be easily read and written by a wide variety of software. The format is also extendable, allowing for the inclusion of new features and capabilities without breaking compatibility with older versions.

A PAM file consists of a header followed by image data. The header is ASCII text that specifies the width, height, depth, and maximum value of the image, as well as the tuple type which defines the color space. The header begins with the magic number 'P7', followed by a series of newline-separated tags that provide the necessary metadata. The image data immediately follows the header and can be stored in either binary or ASCII format, with binary being the more common choice due to its smaller file size and faster processing time.

The depth specified in the PAM header indicates the number of channels or components per pixel. For example, a depth of 3 typically represents the red, green, and blue channels of a color image, while a depth of 4 might include an additional alpha channel for transparency. The maximum value, also specified in the header, indicates the maximum value for any channel, which in turn determines the bit depth of the image. For instance, a maximum value of 255 corresponds to 8 bits per channel.

The tuple type is a key feature of the PAM format, as it defines the interpretation of the pixel data. Common tuple types include 'BLACKANDWHITE', 'GRAYSCALE', 'RGB', and 'RGB_ALPHA', among others. This flexibility allows PAM files to represent a wide variety of image types, from simple black and white images to full-color images with transparency. Additionally, custom tuple types can be defined, making the format extensible and adaptable to specialized imaging requirements.

PAM files can also include optional comment lines in the header, which begin with a '#' character. These comments are ignored by image readers and are intended for human readers. They can be used to store metadata such as the image's creation date, the software used to generate the image, or any other relevant information that does not fit into the standard header fields.

The image data in a PAM file is stored in a sequence of tuples, with each tuple representing one pixel. The tuples are ordered from left to right and top to bottom, starting with the top-left pixel of the image. In the binary format, the data for each channel of a tuple is stored as a binary integer, with the number of bytes per channel determined by the maximum value specified in the header. In the ASCII format, the channel values are represented as ASCII decimal numbers separated by whitespace.

One of the advantages of the PAM format is its simplicity, which makes it easy to parse and generate. This simplicity comes at the cost of file size, as PAM does not include any built-in compression mechanisms. However, PAM files can be externally compressed using general-purpose compression algorithms such as gzip or bzip2, which can significantly reduce file size for storage or transmission.

Despite its advantages, the PAM format is not widely used in the mainstream due to the dominance of other image formats such as JPEG, PNG, and GIF, which offer built-in compression and are supported by a broader range of software and hardware. However, PAM remains a valuable format for certain applications, particularly those that require a high degree of flexibility or that involve image processing or analysis tasks where the simplicity and precision of the format are beneficial.

In the context of software development, the PAM format is often used as an intermediate format in image processing pipelines. Its straightforward structure makes it easy to manipulate with custom scripts or programs, and its flexibility allows it to accommodate the output of various processing steps without loss of information. For example, an image might be converted to PAM format, processed to apply filters or transformations, and then converted to a more common format for display or distribution.

The Netpbm library is the primary software package for working with PAM and other Netpbm formats. It provides a collection of command-line tools for converting between formats, as well as for performing basic image manipulations such as scaling, cropping, and color adjustments. The library also includes programming interfaces for C and other languages, allowing developers to read and write PAM files directly within their applications.

For users and developers interested in working with the PAM format, there are several considerations to keep in mind. First, because the format is less common, not all image viewing and editing software will support it natively. It may be necessary to use specialized tools or convert to a different format for certain tasks. Second, the lack of compression means that PAM files can be quite large, especially for high-resolution images, so storage and bandwidth should be taken into account when working with this format.

Despite these considerations, the PAM format's strengths make it a valuable tool in certain contexts. Its simplicity and flexibility facilitate rapid development and experimentation, and its extensibility ensures that it can adapt to future needs. For research, scientific imaging, or any application where the integrity and precision of image data are paramount, PAM offers a robust solution.

In conclusion, the PAM image format is a versatile and straightforward file format that is part of the Netpbm family of image formats. It is designed to be simple, flexible, and platform-independent, making it suitable for a wide range of image types and applications. While it may not be the best choice for every situation, particularly where file size or widespread compatibility are concerns, its strengths make it an excellent choice for specialized applications that require the precise representation and manipulation of image data. As such, it remains a relevant and useful format in the fields of image processing and analysis.

Supported formats

AAI.aai

AAI Dune image

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Image File Format

AVS.avs

AVS X image

BAYER.bayer

Raw Bayer Image

BMP.bmp

Microsoft Windows bitmap image

CIN.cin

Cineon Image File

CLIP.clip

Image Clip Mask

CMYK.cmyk

Raw cyan, magenta, yellow, and black samples

CMYKA.cmyka

Raw cyan, magenta, yellow, black, and alpha samples

CUR.cur

Microsoft icon

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) image

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Encapsulated Portable Document Format

EPI.epi

Adobe Encapsulated PostScript Interchange format

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange format

EPT.ept

Encapsulated PostScript with TIFF preview

EPT2.ept2

Encapsulated PostScript Level II with TIFF preview

EXR.exr

High dynamic-range (HDR) image

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Flexible Image Transport System

GIF.gif

CompuServe graphics interchange format

GIF87.gif87

CompuServe graphics interchange format (version 87a)

GROUP4.group4

Raw CCITT Group4

HDR.hdr

High Dynamic Range image

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Microsoft icon

ICON.icon

Microsoft icon

IPL.ipl

IP2 Location Image

J2C.j2c

JPEG-2000 codestream

J2K.j2k

JPEG-2000 codestream

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 File Format Syntax

JPC.jpc

JPEG-2000 codestream

JPE.jpe

Joint Photographic Experts Group JFIF format

JPEG.jpeg

Joint Photographic Experts Group JFIF format

JPG.jpg

Joint Photographic Experts Group JFIF format

JPM.jpm

JPEG-2000 File Format Syntax

JPS.jps

Joint Photographic Experts Group JPS format

JPT.jpt

JPEG-2000 File Format Syntax

JXL.jxl

JPEG XL image

MAP.map

Multi-resolution Seamless Image Database (MrSID)

MAT.mat

MATLAB level 5 image format

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Common 2-dimensional bitmap format

PBM.pbm

Portable bitmap format (black and white)

PCD.pcd

Photo CD

PCDS.pcds

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer Format

PDF.pdf

Portable Document Format

PDFA.pdfa

Portable Document Archive Format

PFM.pfm

Portable float format

PGM.pgm

Portable graymap format (gray scale)

PGX.pgx

JPEG 2000 uncompressed format

PICON.picon

Personal Icon

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF format

PNG.png

Portable Network Graphics

PNG00.png00

PNG inheriting bit-depth, color-type from original image

PNG24.png24

Opaque or binary transparent 24-bit RGB (zlib 1.2.11)

PNG32.png32

Opaque or binary transparent 32-bit RGBA

PNG48.png48

Opaque or binary transparent 48-bit RGB

PNG64.png64

Opaque or binary transparent 64-bit RGBA

PNG8.png8

Opaque or binary transparent 8-bit indexed

PNM.pnm

Portable anymap

PPM.ppm

Portable pixmap format (color)

PS.ps

Adobe PostScript file

PSB.psb

Adobe Large Document Format

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

Raw red, green, and blue samples

RGBA.rgba

Raw red, green, blue, and alpha samples

RGBO.rgbo

Raw red, green, blue, and opacity samples

SIX.six

DEC SIXEL Graphics Format

SUN.sun

Sun Rasterfile

SVG.svg

Scalable Vector Graphics

SVGZ.svgz

Compressed Scalable Vector Graphics

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision Targa image

VIPS.vips

VIPS image

WBMP.wbmp

Wireless Bitmap (level 0) image

WEBP.webp

WebP Image Format

YUV.yuv

CCIR 601 4:1:1 or 4:2:2

Frequently asked questions

How does this work?

This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.

How long does it take to convert a file?

Conversions start instantly, and most files are converted in under a second. Larger files may take longer.

What happens to my files?

Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.

What file types can I convert?

We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.

How much does this cost?

This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.

Can I convert multiple files at once?

Yes! You can convert as many files as you want at once. Just select multiple files when you add them.