EPI Background Remover
Drag and drop or click to select.
Private and secure
Everything happens in your browser. Your files never touch our servers.
Blazing fast
No uploading, no waiting. Convert the moment you drop a file.
Actually free
No account required. No hidden costs. No file size tricks.
Background removal separates a subject from its surroundings so you can place it on transparency, swap the scene, or composite it into a new design. Under the hood you’re estimating an alpha matte—a per-pixel opacity from 0 to 1—and then alpha-compositing the foreground over something else. This is the math from Porter–Duff and the cause of familiar pitfalls like “fringes” and straight vs. premultiplied alpha. For practical guidance on premultiplication and linear color, see Microsoft’s Win2D notes, Søren Sandmann, and Lomont’s write-up on linear blending.
The main ways people remove backgrounds
1) Chroma key (“green/blue screen”)
If you can control capture, paint the backdrop a solid color (often green) and key that hue away. It’s fast, battle-tested in film and broadcast, and ideal for video. The trade-offs are lighting and wardrobe: colored light spills onto edges (especially hair), so you’ll use despill tools to neutralize contamination. Good primers include Nuke’s docs, Mixing Light, and a hands-on Fusion demo.
2) Interactive segmentation (classic CV)
For single images with messy backgrounds, interactive algorithms need a few user hints—e.g., a loose rectangle or scribbles—and converge to a crisp mask. The canonical method is GrabCut (book chapter), which learns color models for foreground/background and uses graph cuts iteratively to separate them. You’ll see similar ideas in GIMP’s Foreground Select based on SIOX (ImageJ plugin).
3) Image matting (fine-grained alpha)
Matting solves fractional transparency at wispy boundaries (hair, fur, smoke, glass). Classic closed-form matting takes a trimap (definitely-fore/definitely-back/unknown) and solves a linear system for alpha with strong edge fidelity. Modern deep image matting trains neural nets on the Adobe Composition-1K dataset (MMEditing docs), and is evaluated with metrics like SAD, MSE, Gradient, and Connectivity (benchmark explainer).
4) Deep learning cutouts (no trimap)
- U2-Net (salient-object detection) is a strong general “remove background” engine (repo).
- MODNet targets real-time portrait matting (PDF).
- F, B, Alpha (FBA) Matting jointly predicts foreground, background, and alpha to reduce color halos (repo).
- Background Matting V2 assumes a background plate and yields strand-level mattes in real time at up to 4K/30fps (project page, repo).
Related segmentation work is also useful: DeepLabv3+ refines boundaries with an encoder–decoder and atrous convolutions (PDF); Mask R-CNN gives per-instance masks (PDF); and SAM (Segment Anything) is a promptable foundation model that zero-shots masks on unfamiliar images.
What popular tools do
- Photoshop: Remove Background quick action runs “Select Subject → layer mask” under the hood (confirmed here; tutorial).
- GIMP: Foreground Select (SIOX).
- Canva: 1-click Background Remover for images and short video.
- remove.bg: web app + API for automation.
- Apple devices: system-level “Lift Subject” in Photos/Safari/Quick Look (cutouts on iOS).
Workflow tips for cleaner cutouts
- Shoot smart. Good lighting and strong subject–background contrast help every method. With green/blue screens, plan for despill (guide).
- Start broad, refine narrow. Run an automatic selection (Select Subject, U2-Net, SAM), then refine edges with brushes or matting (e.g., closed-form).
- Mind semi-transparency. Glass, veils, motion blur, flyaway hair need true alpha (not just a hard mask). Methods that also recover F/B/α minimize halos.
- Know your alpha. Straight vs. premultiplied produce different edge behavior; export/composite consistently (see overview, Hargreaves).
- Pick the right output. For “no background,” deliver a raster with a clean alpha (e.g., PNG/WebP) or keep layered files with masks if further edits are expected. The key is the quality of the alpha you computed—rooted in Porter–Duff.
Quality & evaluation
Academic work reports SAD, MSE, Gradient, and Connectivity errors on Composition-1K. If you’re picking a model, look for those metrics (metric defs; Background Matting metrics section). For portraits/video, MODNet and Background Matting V2 are strong; for general “salient object” images, U2-Net is a solid baseline; for tough transparency, FBA can be cleaner.
Common edge cases (and fixes)
- Hair & fur: favor matting (trimap or portrait matting like MODNet) and inspect on a checkerboard.
- Fine structures (bike spokes, fishing line): use high-res inputs and a boundary-aware segmenter such as DeepLabv3+ as a pre-step before matting.
- See-through stuff (smoke, glass): you need fractional alpha and often foreground color estimation (FBA).
- Video conferencing: if you can capture a clean plate, Background Matting V2 looks more natural than naive “virtual background” toggles.
Where this shows up in the real world
- E-commerce: marketplaces (e.g., Amazon) often require a pure white main image background; see Product image guide (RGB 255,255,255).
- Design tools: Canva’s Background Remover and Photoshop’s Remove Background streamline quick cutouts.
- On-device convenience: iOS/macOS “Lift Subject” is great for casual sharing.
Why cutouts sometimes look fake (and fixes)
- Color spill: green/blue light wraps onto the subject—use despill controls or targeted color replacement.
- Halo/fringes: usually an alpha-interpretation mismatch (straight vs. premultiplied) or edge pixels contaminated by the old background; convert/interpret correctly (overview, details).
- Wrong blur/grain: paste a razor-sharp subject into a soft background and it pops; match lens blur and grain after compositing (see Porter–Duff basics).
TL;DR playbook
- If you control capture: use chroma key; light evenly; plan despill.
- If it’s a one-off photo: try Photoshop’s Remove Background, Canva’s remover, or remove.bg; refine with brushes/matting for hair.
- If you need production-grade edges: use matting ( closed-form or deep) and check alpha on transparency; mind alpha interpretation.
- For portraits/video: consider MODNet or Background Matting V2; for click-guided segmentation, SAM is a powerful front-end.
What is the EPI format?
Adobe Encapsulated PostScript Interchange format
The Extended Postscript Image (EPI) format is a specialized file format designed for representing images in environments where PostScript printing and display are prevalent. This format is a derivative of the more commonly known EPS (Encapsulated PostScript) format, yet it incorporates additional features aimed at enhancing color management, compression, and overall flexibility. The use of EPI format is particularly significant in industries where high-quality printing and accurate color reproduction are essential, such as in graphic design, publishing, and digital arts.
An EPI file essentially contains a description of an image or a drawing in the PostScript language, which is a programming language optimized for printing. PostScript is a dynamically typed, concatenative programming language and was created by Adobe Systems in 1982. It is unique because it can describe, with high precision, both text and graphic information in a single file. In the context of EPI, this capability is leveraged to encapsulate complex graphic designs, including sharp text and detailed illustrations, in a format that can be reliably printed on PostScript-compatible printers.
One of the primary features that distinguish the EPI format from its predecessors is its improved support for color management. Color management is a crucial aspect of digital image processing, as it ensures that colors are represented consistently across different devices. EPI files incorporate color profiles based on the International Color Consortium (ICC) standards, which define how colors should be reproduced on various devices. This means that an image saved in the EPI format can retain its intended color accuracy whether it is viewed on a computer monitor, printed on paper, or reproduced in any other medium.
Compression is another area where the EPI format excels. High-quality images are often large in size, which can be a limitation when transferring files or saving storage space. EPI supports several compression algorithms, including both lossy and lossless methods. Lossy compression, like JPEG, reduces file size by slightly lowering image quality, which might be acceptable for certain applications. Lossless compression, such as ZIP or LZW used in TIFF files, retains the original image quality but might not reduce the file size as significantly. The choice of compression can be customized based on the specific needs of the user, balancing between image quality and file size.
Additionally, the EPI format is designed to enhance scalability and resolution independence. Images stored in this format can be scaled up or down without loss of detail, which is particularly useful for printing applications where different sizes might be required. This is achieved through the use of vector graphics for illustrations and text, alongside bitmap images for photographic content. Vector graphics are based on mathematical equations to draw shapes and lines, allowing them to be resized infinitely without pixelation. This feature makes EPI an ideal choice for creating logos, banners, and other marketing materials that need to be reproduced at various sizes.
EPI also features advanced embedding capabilities that allow it to contain a complete subset of the PostScript language. This allows for the inclusion of functions, variables, and control structures within an EPI file, providing a powerful tool for creating dynamic and interactive images. For example, an EPI file can include code that adjusts the colors of an image based on the output device, whether it's a high-resolution printer or a standard computer monitor. This flexibility opens up new possibilities for cross-media publishing and ensures that images can adapt to different contexts without requiring manual adjustments.
The standardization of the EPI format plays a significant role in its adoption and interoperability. By adhering to well-established PostScript conventions and incorporating modern features such as ICC color profiles and various compression methods, EPI files can be seamlessly integrated into existing workflows. Additionally, the widespread support of PostScript across different operating systems and software applications ensures that EPI files are accessible and usable by a broad audience. This compatibility removes barriers to collaboration and allows for the efficient exchange of high-quality images between designers, printers, and publishers.
Creating and manipulating EPI files requires specialized software that understands the PostScript language and supports the features specific to the EPI format. Adobe Illustrator and Photoshop are examples of such software, offering extensive tools for designing and exporting images in EPI format. These applications not only provide a rich set of drawing and editing capabilities but also include features for color management, allowing designers to work with precise color specifications and to preview how their images will look across various output devices.
In terms of file structure, an EPI file is composed of a header, a body, and a trailer. The header includes metadata about the file, such as the creator, creation date, and the bounding box which defines the physical dimensions of the image. The body contains the actual PostScript code describing the image, and may include embedded ICC profiles, font definitions, and other resources required for rendering the image. The trailer marks the end of the file and can include additional information such as thumbnails or preview images. This structured approach ensures that EPI files are both flexible and self-contained, making them easy to manage and exchange.
Despite its many advantages, the EPI format is not without challenges. The complexity of the PostScript language can make generating and editing EPI files somewhat daunting for those not familiar with programming. Furthermore, because EPI files can contain executable code, they must be handled with care to avoid security vulnerabilities. This necessitates the use of trusted software and cautious handling of files from unknown sources.
In conclusion, the Extended Postscript Image (EPI) format represents a powerful and versatile tool for digital image processing, particularly in fields requiring high-quality printing and accurate color reproduction. Its support for advanced color management, compression, scalability, and embedding capabilities make it an ideal choice for professionals in graphic design, publishing, and related industries. While it requires specialized software and knowledge to fully exploit its potential, the benefits of using the EPI format in terms of flexibility, quality, and efficiency are substantial. As digital imaging and printing technology continue to evolve, the EPI format stands as a testament to the enduring value of combining technical precision with creative flexibility.
Supported formats
AAI.aai
AAI Dune image
AI.ai
Adobe Illustrator CS2
AVIF.avif
AV1 Image File Format
BAYER.bayer
Raw Bayer Image
BMP.bmp
Microsoft Windows bitmap image
CIN.cin
Cineon Image File
CLIP.clip
Image Clip Mask
CMYK.cmyk
Raw cyan, magenta, yellow, and black samples
CUR.cur
Microsoft icon
DCX.dcx
ZSoft IBM PC multi-page Paintbrush
DDS.dds
Microsoft DirectDraw Surface
DPX.dpx
SMTPE 268M-2003 (DPX 2.0) image
DXT1.dxt1
Microsoft DirectDraw Surface
EPDF.epdf
Encapsulated Portable Document Format
EPI.epi
Adobe Encapsulated PostScript Interchange format
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Adobe Encapsulated PostScript Interchange format
EPT.ept
Encapsulated PostScript with TIFF preview
EPT2.ept2
Encapsulated PostScript Level II with TIFF preview
EXR.exr
High dynamic-range (HDR) image
FF.ff
Farbfeld
FITS.fits
Flexible Image Transport System
GIF.gif
CompuServe graphics interchange format
HDR.hdr
High Dynamic Range image
HEIC.heic
High Efficiency Image Container
HRZ.hrz
Slow Scan TeleVision
ICO.ico
Microsoft icon
ICON.icon
Microsoft icon
J2C.j2c
JPEG-2000 codestream
J2K.j2k
JPEG-2000 codestream
JNG.jng
JPEG Network Graphics
JP2.jp2
JPEG-2000 File Format Syntax
JPE.jpe
Joint Photographic Experts Group JFIF format
JPEG.jpeg
Joint Photographic Experts Group JFIF format
JPG.jpg
Joint Photographic Experts Group JFIF format
JPM.jpm
JPEG-2000 File Format Syntax
JPS.jps
Joint Photographic Experts Group JPS format
JPT.jpt
JPEG-2000 File Format Syntax
JXL.jxl
JPEG XL image
MAP.map
Multi-resolution Seamless Image Database (MrSID)
MAT.mat
MATLAB level 5 image format
PAL.pal
Palm pixmap
PALM.palm
Palm pixmap
PAM.pam
Common 2-dimensional bitmap format
PBM.pbm
Portable bitmap format (black and white)
PCD.pcd
Photo CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Palm Database ImageViewer Format
PDF.pdf
Portable Document Format
PDFA.pdfa
Portable Document Archive Format
PFM.pfm
Portable float format
PGM.pgm
Portable graymap format (gray scale)
PGX.pgx
JPEG 2000 uncompressed format
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Joint Photographic Experts Group JFIF format
PNG.png
Portable Network Graphics
PNG00.png00
PNG inheriting bit-depth, color-type from original image
PNG24.png24
Opaque or binary transparent 24-bit RGB (zlib 1.2.11)
PNG32.png32
Opaque or binary transparent 32-bit RGBA
PNG48.png48
Opaque or binary transparent 48-bit RGB
PNG64.png64
Opaque or binary transparent 64-bit RGBA
PNG8.png8
Opaque or binary transparent 8-bit indexed
PNM.pnm
Portable anymap
PPM.ppm
Portable pixmap format (color)
PS.ps
Adobe PostScript file
PSB.psb
Adobe Large Document Format
PSD.psd
Adobe Photoshop bitmap
RGB.rgb
Raw red, green, and blue samples
RGBA.rgba
Raw red, green, blue, and alpha samples
RGBO.rgbo
Raw red, green, blue, and opacity samples
SIX.six
DEC SIXEL Graphics Format
SUN.sun
Sun Rasterfile
SVG.svg
Scalable Vector Graphics
TIFF.tiff
Tagged Image File Format
VDA.vda
Truevision Targa image
VIPS.vips
VIPS image
WBMP.wbmp
Wireless Bitmap (level 0) image
WEBP.webp
WebP Image Format
YUV.yuv
CCIR 601 4:1:1 or 4:2:2
Frequently asked questions
How does this work?
This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.
How long does it take to convert a file?
Conversions start instantly, and most files are converted in under a second. Larger files may take longer.
What happens to my files?
Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.
What file types can I convert?
We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.
How much does this cost?
This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.
Can I convert multiple files at once?
Yes! You can convert as many files as you want at once. Just select multiple files when you add them.