CLIP Background Remover

Remove backgrounds from any image in your browser. For free, forever.

Private and secure

Everything happens in your browser. Your files never touch our servers.

Blazing fast

No uploading, no waiting. Convert the moment you drop a file.

Actually free

No account required. No hidden costs. No file size tricks.

Background removal separates a subject from its surroundings so you can place it on transparency, swap the scene, or composite it into a new design. Under the hood you’re estimating an alpha matte—a per-pixel opacity from 0 to 1—and then alpha-compositing the foreground over something else. This is the math from Porter–Duff and the cause of familiar pitfalls like “fringes” and straight vs. premultiplied alpha. For practical guidance on premultiplication and linear color, see Microsoft’s Win2D notes, Søren Sandmann, and Lomont’s write-up on linear blending.


The main ways people remove backgrounds

1) Chroma key (“green/blue screen”)

If you can control capture, paint the backdrop a solid color (often green) and key that hue away. It’s fast, battle-tested in film and broadcast, and ideal for video. The trade-offs are lighting and wardrobe: colored light spills onto edges (especially hair), so you’ll use despill tools to neutralize contamination. Good primers include Nuke’s docs, Mixing Light, and a hands-on Fusion demo.

2) Interactive segmentation (classic CV)

For single images with messy backgrounds, interactive algorithms need a few user hints—e.g., a loose rectangle or scribbles—and converge to a crisp mask. The canonical method is GrabCut (book chapter), which learns color models for foreground/background and uses graph cuts iteratively to separate them. You’ll see similar ideas in GIMP’s Foreground Select based on SIOX (ImageJ plugin).

3) Image matting (fine-grained alpha)

Matting solves fractional transparency at wispy boundaries (hair, fur, smoke, glass). Classic closed-form matting takes a trimap (definitely-fore/definitely-back/unknown) and solves a linear system for alpha with strong edge fidelity. Modern deep image matting trains neural nets on the Adobe Composition-1K dataset (MMEditing docs), and is evaluated with metrics like SAD, MSE, Gradient, and Connectivity (benchmark explainer).

4) Deep learning cutouts (no trimap)

Related segmentation work is also useful: DeepLabv3+ refines boundaries with an encoder–decoder and atrous convolutions (PDF); Mask R-CNN gives per-instance masks (PDF); and SAM (Segment Anything) is a promptable foundation model that zero-shots masks on unfamiliar images.


What popular tools do


Workflow tips for cleaner cutouts

  1. Shoot smart. Good lighting and strong subject–background contrast help every method. With green/blue screens, plan for despill (guide).
  2. Start broad, refine narrow. Run an automatic selection (Select Subject, U2-Net, SAM), then refine edges with brushes or matting (e.g., closed-form).
  3. Mind semi-transparency. Glass, veils, motion blur, flyaway hair need true alpha (not just a hard mask). Methods that also recover F/B/α minimize halos.
  4. Know your alpha. Straight vs. premultiplied produce different edge behavior; export/composite consistently (see overview, Hargreaves).
  5. Pick the right output. For “no background,” deliver a raster with a clean alpha (e.g., PNG/WebP) or keep layered files with masks if further edits are expected. The key is the quality of the alpha you computed—rooted in Porter–Duff.

Quality & evaluation

Academic work reports SAD, MSE, Gradient, and Connectivity errors on Composition-1K. If you’re picking a model, look for those metrics (metric defs; Background Matting metrics section). For portraits/video, MODNet and Background Matting V2 are strong; for general “salient object” images, U2-Net is a solid baseline; for tough transparency, FBA can be cleaner.


Common edge cases (and fixes)

  • Hair & fur: favor matting (trimap or portrait matting like MODNet) and inspect on a checkerboard.
  • Fine structures (bike spokes, fishing line): use high-res inputs and a boundary-aware segmenter such as DeepLabv3+ as a pre-step before matting.
  • See-through stuff (smoke, glass): you need fractional alpha and often foreground color estimation (FBA).
  • Video conferencing: if you can capture a clean plate, Background Matting V2 looks more natural than naive “virtual background” toggles.

Where this shows up in the real world


Why cutouts sometimes look fake (and fixes)

  • Color spill: green/blue light wraps onto the subject—use despill controls or targeted color replacement.
  • Halo/fringes: usually an alpha-interpretation mismatch (straight vs. premultiplied) or edge pixels contaminated by the old background; convert/interpret correctly (overview, details).
  • Wrong blur/grain: paste a razor-sharp subject into a soft background and it pops; match lens blur and grain after compositing (see Porter–Duff basics).

TL;DR playbook

  1. If you control capture: use chroma key; light evenly; plan despill.
  2. If it’s a one-off photo: try Photoshop’s Remove Background, Canva’s remover, or remove.bg; refine with brushes/matting for hair.
  3. If you need production-grade edges: use matting ( closed-form or deep) and check alpha on transparency; mind alpha interpretation.
  4. For portraits/video: consider MODNet or Background Matting V2; for click-guided segmentation, SAM is a powerful front-end.

What is the CLIP format?

Image Clip Mask

The CLIP (Coded Layer Image Processing) image format is a relatively new approach in the field of digital imaging, designed to offer both high efficiency in image coding and superior flexibility in image manipulation and editing. This image format utilizes advanced compression techniques and a unique layer-based structure to significantly reduce file sizes while preserving image quality. The advent of CLIP comes as a response to the increasing demand for more sophisticated image formats that can support the complexities of modern digital graphics, including extensive editing capabilities without the loss of quality typically associated with repeated compression and decompression cycles.

The fundamental principle behind the CLIP image format lies in its innovative use of a layered structure. Unlike traditional image formats such as JPEG or PNG, which treat an image as a single flat array of pixels, CLIP organizes the image into multiple layers. Each layer can represent different elements of the image, such as background, objects, text, and effects. This layered approach not only facilitates complex editing without affecting the rest of the image but also allows for more efficient compression, as each layer can be compressed independently according to its content complexity.

Compression is at the heart of the CLIP format's efficiency. CLIP employs a hybrid compression scheme that intelligently combines both lossy and lossless compression techniques. The choice between lossy and lossless compression is made on a layer-by-layer basis, depending on the nature of the content within each layer. For example, a layer containing detailed artwork may use lossless compression to preserve quality, while a layer with uniform colors might be more suited to lossy compression to achieve higher compression rates. This selective approach allows CLIP files to maintain high-quality imagery at significantly reduced file sizes.

In addition to its layered structure and hybrid compression algorithm, the CLIP image format incorporates advanced features designed to enhance image fidelity and editing capabilities. One such feature is the support for high dynamic range (HDR) imaging, which allows CLIP images to display a wider range of brightness and color than is possible with standard dynamic range (SDR) images. HDR support ensures that CLIP images can represent more realistic and vibrant scenes, making the format especially suitable for professional photography, digital art, and any application requiring high-quality visual representation.

Another noteworthy feature of the CLIP image format is its support for non-destructive editing. Thanks to its layered structure, edits made to a CLIP image can be saved as separate layers or as adjustments to existing layers. This means that the original image data can remain untouched, allowing users to revert changes or apply different edits without compromising the underlying quality. Non-destructive editing is a critical feature for professionals in graphic design, photography, and digital art, where the ability to experiment with different edits without degradation is essential.

The CLIP format is also designed with compatibility and interoperability in mind. It supports seamless integration with major graphics software and editing tools, making it easy for users to adopt the format into their existing workflows. Additionally, the format includes metadata support, which can store information about the image such as copyright details, camera settings, and editing history. This metadata layer enhances the utility of CLIP images for professional use, aiding in asset management and project coordination.

Despite its numerous advantages, the adoption of the CLIP image format faces challenges. The primary hurdle is the need for widespread support across software applications and platforms. For CLIP to become a widely accepted standard, developers of image editing software, web browsers, and graphic design tools must implement support for the format. This requires time and resources, which can be a deterrent, especially for well-established software with vast user bases. Furthermore, users may initially resist transitioning to a new format due to the inertia of habit and the potential need for learning new workflows or adopting new tools.

Another challenge is optimizing the balance between compression efficiency and image quality. While the hybrid compression technique of CLIP offers great promise, achieving the optimal balance for different types of content within an image can be complex. It requires sophisticated algorithms to analyze each layer's content and decide the most appropriate compression method. Additionally, the effectiveness of compression can vary depending on the specific nature of the image content, such as textures, colors, and patterns, posing a continuous challenge for further refinement of the format.

Despite these challenges, the future of the CLIP image format looks promising. With increasing awareness of its benefits and as more software vendors incorporate support for CLIP, we can expect to see broader adoption. The format's ability to offer high-quality, flexible editing options while keeping file sizes manageable addresses key needs in digital imaging today. Moreover, as digital cameras and displays continue to advance, offering higher resolutions and wider color gamuts, the demand for image formats that can efficiently handle these advancements without compromising on quality or editing functionality will only grow.

In conclusion, the CLIP image format represents a significant leap forward in digital imaging technology, offering a novel solution that combines high efficiency, superior editing capabilities, and robust support for modern imaging requirements. Its layered structure, flexible compression methods, and support for features like HDR and non-destructive editing make it particularly appealing to professionals in photography, graphic design, and digital art. While challenges to widespread adoption exist, ongoing developments and increasing support from the software community suggest that CLIP could play a crucial role in the future of digital imagery. As the digital landscape continues to evolve, the relevance and utility of the CLIP image format are poised to grow, marking it as a pivotal innovation in the quest for more sophisticated and efficient image processing tools.

Supported formats

AAI.aai

AAI Dune image

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Image File Format

BAYER.bayer

Raw Bayer Image

BMP.bmp

Microsoft Windows bitmap image

CIN.cin

Cineon Image File

CLIP.clip

Image Clip Mask

CMYK.cmyk

Raw cyan, magenta, yellow, and black samples

CUR.cur

Microsoft icon

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) image

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Encapsulated Portable Document Format

EPI.epi

Adobe Encapsulated PostScript Interchange format

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange format

EPT.ept

Encapsulated PostScript with TIFF preview

EPT2.ept2

Encapsulated PostScript Level II with TIFF preview

EXR.exr

High dynamic-range (HDR) image

FF.ff

Farbfeld

FITS.fits

Flexible Image Transport System

GIF.gif

CompuServe graphics interchange format

HDR.hdr

High Dynamic Range image

HEIC.heic

High Efficiency Image Container

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Microsoft icon

ICON.icon

Microsoft icon

J2C.j2c

JPEG-2000 codestream

J2K.j2k

JPEG-2000 codestream

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 File Format Syntax

JPE.jpe

Joint Photographic Experts Group JFIF format

JPEG.jpeg

Joint Photographic Experts Group JFIF format

JPG.jpg

Joint Photographic Experts Group JFIF format

JPM.jpm

JPEG-2000 File Format Syntax

JPS.jps

Joint Photographic Experts Group JPS format

JPT.jpt

JPEG-2000 File Format Syntax

JXL.jxl

JPEG XL image

MAP.map

Multi-resolution Seamless Image Database (MrSID)

MAT.mat

MATLAB level 5 image format

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Common 2-dimensional bitmap format

PBM.pbm

Portable bitmap format (black and white)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer Format

PDF.pdf

Portable Document Format

PDFA.pdfa

Portable Document Archive Format

PFM.pfm

Portable float format

PGM.pgm

Portable graymap format (gray scale)

PGX.pgx

JPEG 2000 uncompressed format

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF format

PNG.png

Portable Network Graphics

PNG00.png00

PNG inheriting bit-depth, color-type from original image

PNG24.png24

Opaque or binary transparent 24-bit RGB (zlib 1.2.11)

PNG32.png32

Opaque or binary transparent 32-bit RGBA

PNG48.png48

Opaque or binary transparent 48-bit RGB

PNG64.png64

Opaque or binary transparent 64-bit RGBA

PNG8.png8

Opaque or binary transparent 8-bit indexed

PNM.pnm

Portable anymap

PPM.ppm

Portable pixmap format (color)

PS.ps

Adobe PostScript file

PSB.psb

Adobe Large Document Format

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

Raw red, green, and blue samples

RGBA.rgba

Raw red, green, blue, and alpha samples

RGBO.rgbo

Raw red, green, blue, and opacity samples

SIX.six

DEC SIXEL Graphics Format

SUN.sun

Sun Rasterfile

SVG.svg

Scalable Vector Graphics

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision Targa image

VIPS.vips

VIPS image

WBMP.wbmp

Wireless Bitmap (level 0) image

WEBP.webp

WebP Image Format

YUV.yuv

CCIR 601 4:1:1 or 4:2:2

Frequently asked questions

How does this work?

This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.

How long does it take to convert a file?

Conversions start instantly, and most files are converted in under a second. Larger files may take longer.

What happens to my files?

Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.

What file types can I convert?

We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.

How much does this cost?

This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.

Can I convert multiple files at once?

Yes! You can convert as many files as you want at once. Just select multiple files when you add them.