PSB 背景移除器
從 任何圖像 中移除背景。在您的瀏覽器中。免費,永遠。
拖放 或 點擊選擇
私密與安全
一切都在您的瀏覽器中進行。您的檔案絕不接觸我們的伺服器。
極速
無需上傳,無需等待。在您拖放檔案的瞬間即可轉換。
完全免費
無需帳戶。無隱藏費用。無檔案大小限制花招。
背景移除將主體與其周圍環境分離開來,這樣你就可以將其放置在 透明背景上、更換場景或將其合成為新設計。在底層,你正在估算一個 alpha 遮罩——一個從 0 到 1 的每像素不透明度——然後將前景alpha 合成到 其他東西上。這是 Porter–Duff 的數學原理,也是“邊緣” 和 直接 alpha 與預乘 alpha 等常見陷阱的起因。有關預乘和線性顏色的實用指南,請參閱 微軟的 Win2D 筆記、 Søren Sandmann 和 Lomont 關於線性混合的文章。
人們移除背景的主要方式
1) 色度鍵(「綠/藍幕」)
如果你能控制拍攝,將背景漆成純色(通常是綠色),然後去背該色調。 這種方法速度快,在電影和廣播中經過實戰檢驗,非常適合影片。權衡之處在於燈光和服裝: 彩色光會溢出到邊緣(尤其是頭髮),所以你需要使用去溢工具來中和污染。 好的入門資料包括 Nuke 的文件、 Mixing Light 和一個實踐性的 Fusion 示範。
2) 互動式分割(傳統電腦視覺)
對於背景雜亂的單張圖片,互動式演算法需要使用者提供一些提示——例如,一個寬鬆的 矩形或塗鴉——然後收斂到一個清晰的遮罩。經典方法是 GrabCut (書中章節),它學習前景/背景的顏色模型,並迭代使用圖割來分離它們。 你會在 GIMP 的前景選擇中看到類似的想法,它基於 SIOX (ImageJ 插件)。
3) 影像去背(細緻 alpha)
去背解決在纖細邊界(頭髮、毛皮、煙霧、玻璃)處的部分透明度問題。經典的 封閉式去背 接受一個三元圖(絕對前景/絕對背景/未知),並求解一個具有強邊緣保真度的 alpha 線性系統。現代的 深度影像去背 在 Adobe Composition-1K 資料集上訓練神經網路(MMEditing 文件),並使用 SAD、MSE、梯度和連通性等指標進行評估(基準解釋器)。
4) 深度學習摳圖(無三元圖)
- U2-Net(顯著性物體檢測)是一個強大的通用“移除背景”引擎