Convert any image to PNG48s

Unlimited conversions. Filesizes up to 2.5GB. For free, forever.

All local

Our converter runs in your browser, so we never see your data.

Blazing fast

No uploading your files to a server—conversions start instantly.

Secure by default

Unlike other converters, your files are never uploaded to us.

What is the PNG48 format?

Opaque or binary transparent 48-bit RGB

The PNG48 image format is an extension of the well-known and widely used Portable Network Graphics (PNG) format. Developed as a means to improve upon the limitations of its predecessor, PNG48 specifically addresses the need for higher color depth in digital images. In essence, the '48' refers to the bit depth, indicating that each pixel of a PNG48 image contains 48 bits of color information. This is a significant leap from the standard 24-bit PNGs, effectively doubling the color precision and providing a richer and more detailed visual experience.

Understanding the architecture of PNG48 requires a deep dive into its color depth and how it handles image data. In a PNG48 file, each pixel is represented by 48 bits, divided into three components: red, green, and blue (RGB). Each of these components has a 16-bit depth, compared to the 8 bits per channel in standard PNG files. This higher bit depth allows for 65,536 shades of red, green, and blue, respectively, culminating in a theoretical palette of over 281 trillion colors. This vast spectrum is particularly beneficial for high-end graphics applications, photography, and digital art, where color accuracy and gradation are paramount.

Compression is a critical aspect of the PNG format, and PNG48 is no exception. PNG uses a lossless compression method known as DEFLATE. This algorithm works by finding and eliminating redundancies in the image data, effectively reducing the file size without sacrificing any detail or quality. The challenge with PNG48 files is their inherently larger size due to the increased color information. Despite this, the DEFLATE algorithm manages to maintain efficient compression ratios, ensuring that the increase in file size is mitigated to the extent possible while preserving the high-fidelity color information.

Transparency is another hallmark feature of the PNG format, and in PNG48, this is handled with similar elegance. PNG48 supports full alpha transparency, allowing each pixel to have an additional component specifying its opacity. However, in a pure PNG48 file, transparency is not directly included in the 48-bit definition. Rather, to incorporate transparency, an extension of the format known as PNG64 is used, where the additional 16 bits are dedicated to the alpha channel. This enables images to have varying degrees of see-through quality, from completely transparent to fully opaque, enhancing the format’s utility in graphic design and web development.

The PNG48 format is inherently more complex than its PNG24 predecessor, demanding more from both hardware and software. The higher color depth requires increased processing power and memory for both viewing and editing. Software compatibility is also a consideration, as not all image viewers and editors support the 48-bit color depth. However, most professional-grade software has been updated to accommodate these higher-quality images, recognizing the value they bring to visual content creators.

One of the critical advantages of the PNG48 format is its applicability in various fields requiring high-fidelity visual representations. In digital photography, the expanded color depth means that nuances in shadows and highlights are preserved much better, reducing the banding effect often seen in gradients with lower color depths. For graphic designers and digital artists, the format offers the ability to work with a broader color spectrum, resulting in more vibrant and lifelike creations.

Despite its advantages, the PNG48 format is not universally ideal. The increased file size, despite lossless compression, makes it less suitable for use on the web, where loading times and bandwidth usage are critical considerations. Therefore, while PNG48 is excellent for archives, digital art, and professional photography, a standard PNG or even a JPEG might be preferable for online content due to their smaller file sizes and faster loading times.

Another significant feature of the PNG48 format is its support for gamma correction. This ensures that images are displayed more consistently across different viewing devices. Gamma correction adjusts the brightness and contrast of an image based on the characteristics of the output device, such as a computer monitor or mobile screen. By supporting this feature, PNG48 images can offer a more uniform visual experience, crucial for digital media that is frequently viewed on a variety of platforms.

For creators and developers interested in utilizing PNG48, understanding the technical specifications and software requirements is crucial. Image editing software such as Adobe Photoshop, GIMP, and others have implemented support for high bit-depth images, allowing for the editing of PNG48 files. However, the increased precision also requires users to have a good understanding of color management practices to ensure the best possible output. Additionally, developers working with web applications must implement fallback options for browsers that do not support high bit-depth PNG files, ensuring broad accessibility.

Optimization and conversion tools also play a significant role in the practical use of PNG48 files. Given their size, optimizing these files for specific use cases is essential. Various software tools and libraries are available to compress PNG48 files further without compromising their quality. Moreover, conversion tools allow for the downscaling of PNG48 files to more widely compatible formats when necessary, providing flexibility in how these high-quality images are used and shared.

In summary, the PNG48 image format represents a significant advancement in digital image technology, offering unparalleled color depth and visual fidelity. While it comes with its set of challenges, including larger file sizes and increased computational requirements, the benefits in terms of image quality are indisputable. As technology continues to advance, and support for higher bit depths becomes more ubiquitous, it is likely that we will see wider adoption of PNG48 and similar formats in professional and high-end consumer applications, pushing the boundaries of digital imagery further.

Supported formats

AAI.aai

AAI Dune image

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Image File Format

AVS.avs

AVS X image

BAYER.bayer

Raw Bayer Image

BMP.bmp

Microsoft Windows bitmap image

CIN.cin

Cineon Image File

CLIP.clip

Image Clip Mask

CMYK.cmyk

Raw cyan, magenta, yellow, and black samples

CMYKA.cmyka

Raw cyan, magenta, yellow, black, and alpha samples

CUR.cur

Microsoft icon

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) image

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Encapsulated Portable Document Format

EPI.epi

Adobe Encapsulated PostScript Interchange format

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange format

EPT.ept

Encapsulated PostScript with TIFF preview

EPT2.ept2

Encapsulated PostScript Level II with TIFF preview

EXR.exr

High dynamic-range (HDR) image

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Flexible Image Transport System

GIF.gif

CompuServe graphics interchange format

GIF87.gif87

CompuServe graphics interchange format (version 87a)

GROUP4.group4

Raw CCITT Group4

HDR.hdr

High Dynamic Range image

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Microsoft icon

ICON.icon

Microsoft icon

IPL.ipl

IP2 Location Image

J2C.j2c

JPEG-2000 codestream

J2K.j2k

JPEG-2000 codestream

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 File Format Syntax

JPC.jpc

JPEG-2000 codestream

JPE.jpe

Joint Photographic Experts Group JFIF format

JPEG.jpeg

Joint Photographic Experts Group JFIF format

JPG.jpg

Joint Photographic Experts Group JFIF format

JPM.jpm

JPEG-2000 File Format Syntax

JPS.jps

Joint Photographic Experts Group JPS format

JPT.jpt

JPEG-2000 File Format Syntax

JXL.jxl

JPEG XL image

MAP.map

Multi-resolution Seamless Image Database (MrSID)

MAT.mat

MATLAB level 5 image format

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Common 2-dimensional bitmap format

PBM.pbm

Portable bitmap format (black and white)

PCD.pcd

Photo CD

PCDS.pcds

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer Format

PDF.pdf

Portable Document Format

PDFA.pdfa

Portable Document Archive Format

PFM.pfm

Portable float format

PGM.pgm

Portable graymap format (gray scale)

PGX.pgx

JPEG 2000 uncompressed format

PICON.picon

Personal Icon

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF format

PNG.png

Portable Network Graphics

PNG00.png00

PNG inheriting bit-depth, color-type from original image

PNG24.png24

Opaque or binary transparent 24-bit RGB (zlib 1.2.11)

PNG32.png32

Opaque or binary transparent 32-bit RGBA

PNG48.png48

Opaque or binary transparent 48-bit RGB

PNG64.png64

Opaque or binary transparent 64-bit RGBA

PNG8.png8

Opaque or binary transparent 8-bit indexed

PNM.pnm

Portable anymap

PPM.ppm

Portable pixmap format (color)

PS.ps

Adobe PostScript file

PSB.psb

Adobe Large Document Format

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

Raw red, green, and blue samples

RGBA.rgba

Raw red, green, blue, and alpha samples

RGBO.rgbo

Raw red, green, blue, and opacity samples

SIX.six

DEC SIXEL Graphics Format

SUN.sun

Sun Rasterfile

SVG.svg

Scalable Vector Graphics

SVGZ.svgz

Compressed Scalable Vector Graphics

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision Targa image

VIPS.vips

VIPS image

WBMP.wbmp

Wireless Bitmap (level 0) image

WEBP.webp

WebP Image Format

YUV.yuv

CCIR 601 4:1:1 or 4:2:2

Frequently asked questions

How does this work?

This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.

How long does it take to convert a file?

Conversions start instantly, and most files are converted in under a second. Larger files may take longer.

What happens to my files?

Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.

What file types can I convert?

We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.

How much does this cost?

This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.

Can I convert multiple files at once?

Yes! You can convert as many files as you want at once. Just select multiple files when you add them.