JNG Removedor de fundo

Remova o fundo de qualquer imagem no seu navegador. De graça, para sempre.

Privado e seguro

Tudo acontece no seu navegador. Seus arquivos nunca tocam nossos servidores.

Incrivelmente rápido

Sem upload, sem espera. Converta no momento em que você solta um arquivo.

Realmente grátis

Nenhuma conta necessária. Sem custos ocultos. Sem truques de tamanho de arquivo.

A remoção de fundo separa um objeto de seu ambiente para que você possa colocá-lo em transparência, trocar a cena ou compô-lo em um novo design. Nos bastidores, você está estimando uma máscara alfa—uma opacidade por pixel de 0 a 1—e então aplicando composição alfa ao primeiro plano sobre outra coisa. Esta é a matemática de Porter–Duff e a causa de problemas comuns como “franjas” e alfa reto vs. pré-multiplicado. Para orientação prática sobre pré-multiplicação e cor linear, consulte as notas do Win2D da Microsoft, Søren Sandmann e o artigo de Lomont sobre mistura linear.


As principais maneiras de remover fundos

1) Chroma key (“tela verde/azul”)

Se você puder controlar a captura, pinte o fundo com uma cor sólida (geralmente verde) e remova esse tom. É rápido, testado e aprovado em filmes e transmissões, e ideal para vídeo. As desvantagens são a iluminação e o vestuário: a luz colorida vaza para as bordas (especialmente o cabelo), então você usará ferramentas de despill para neutralizar a contaminação. Boas referências incluem a documentação do Nuke, Mixing Light e uma demonstração prática do Fusion.

2) Segmentação interativa (CV clássico)

Para imagens únicas com fundos bagunçados, algoritmos interativos precisam de algumas dicas do usuário—por exemplo, um retângulo solto ou rabiscos—e geram uma máscara nítida. O método canônico é GrabCut (capítulo de livro), que aprende modelos de cores para primeiro plano/fundo e usa cortes de grafo iterativamente para separá-los. Você verá ideias semelhantes na Seleção de Primeiro Plano do GIMP baseada em SIOX (plugin ImageJ).

3) Matting de imagem (alfa de granulação fina)

Matting resolve a transparência fracionária em limites finos (cabelo, pelo, fumaça, vidro). O matting de forma fechada clássico pega um trimap (definitivamente-primeiro plano/definitivamente-fundo/desconhecido) e resolve um sistema linear para alfa com forte precisão de borda. O matting de imagem profundo moderno treina redes neurais no conjunto de dados Adobe Composition-1K (documentos do MMEditing), e é avaliado com métricas como SAD, MSE, Gradiente e Conectividade (explicador de benchmark).

4) Recortes de aprendizado profundo (sem trimap)

Trabalhos de segmentação relacionados também são úteis: DeepLabv3+ refina limites com um codificador-decodificador e convoluções atrous (PDF); Mask R-CNN fornece máscaras por instância (PDF); e SAM (Segment Anything) é um modelo de base controlável por prompt que gera máscaras sem necessidade de treinamento em imagens desconhecidas.


O que as ferramentas populares fazem


Dicas de fluxo de trabalho para recortes mais limpos

  1. Fotografe de forma inteligente. Boa iluminação e forte contraste entre objeto e fundo ajudam em todos os métodos. Com telas verdes/azuis, planeje o despill (guia).
  2. Comece de forma ampla e refine os detalhes. Execute uma seleção automática (Selecionar Objeto, U2-Net, SAM), depois refine as bordas com pincéis ou matting (por exemplo, forma fechada).
  3. Atenção à semitransparência. Vidro, véus, desfoque de movimento, cabelos esvoaçantes precisam de alfa verdadeiro (não apenas uma máscara dura). Métodos que também recuperam F/B/α minimizam halos.
  4. Entenda o canal alfa. Reto vs. pré-multiplicado produzem comportamento de borda diferente; exporte/componha de forma consistente (veja visão geral, Hargreaves).
  5. Escolha o formato de saída correto. Para “sem fundo”, entregue um raster com um alfa limpo (por exemplo, PNG/WebP) ou mantenha arquivos em camadas com máscaras se forem esperadas mais edições. A chave é a qualidade do alfa que você calculou—enraizada em Porter–Duff.

Qualidade e avaliação

Trabalhos acadêmicos relatam erros de SAD, MSE, Gradiente e Conectividade em Composition-1K. Se você está escolhendo um modelo, procure por essas métricas (definições de métricas; seção de métricas do Background Matting). Para retratos/vídeo, MODNet e Background Matting V2 são potentes; para imagens gerais de “objetos salientes”, U2-Net é uma base sólida; para transparências difíceis, FBA pode apresentar resultados melhores.


Casos limite comuns (e soluções)

  • Cabelo e pelo: dê preferência ao matting (trimap ou matting de retrato como MODNet) e inspecione sobre um fundo de tabuleiro de xadrez.
  • Estruturas finas (raios de bicicleta, linha de pesca): use entradas de alta resolução e um segmentador ciente de limites como DeepLabv3+ como uma etapa pré-matting.
  • Objetos transparentes (fumaça, vidro): você precisa de alfa fracionário e, muitas vezes, estimativa de cor do primeiro plano (FBA).
  • Videoconferência: se você puder capturar uma placa limpa, Background Matting V2 parece mais natural do que as ingênuas opções de “fundo virtual”.

Onde isso aparece no mundo real

  • Comércio eletrônico: marketplaces (por exemplo, Amazon) geralmente exigem um fundo de imagem principal branco puro; consulte o Guia de imagem do produto (RGB 255,255,255).
  • Ferramentas de design: o Removedor de Fundo do Canva e o Remover Fundo do Photoshop otimizam recortes rápidos.
  • Conveniência no dispositivo: o “Destacar Objeto do Fundo” do iOS/macOS é ótimo para compartilhamento informal.

Por que os recortes às vezes parecem falsos (e correções)

  • Vazamento de cor: a luz verde/azul envolve o objeto—use controles de despill ou substituição de cor localizada.
  • Halo/franjas: geralmente uma incompatibilidade de interpretação de alfa (reto vs. pré-multiplicado) ou pixels de borda contaminados pelo fundo antigo; converta/interprete corretamente (visão geral, detalhes).
  • Desfoque/grão errado: cole um objeto nítido em um fundo desfocado e ele se sobressairá; combine o desfoque da lente e o granulado após a composição (veja noções básicas de Porter–Duff).

Manual TL;DR

  1. Se você controla a captura: use chroma key; ilumine uniformemente; planeje o despill.
  2. Se for uma foto única: experimente o Removedor de Fundo do Photoshop, o removedor do Canva ou remove.bg; refine com pincéis/matting para cabelos.
  3. Se você precisa de bordas de nível de produção: use matting ( forma fechada ou profundo) e verifique o alfa na transparência; atente-se à interpretação do alfa.
  4. Para retratos/vídeo: considere MODNet ou Background Matting V2; para segmentação guiada por cliques, SAM é um front-end poderoso.

O que é o formato JNG?

Gráficos de Rede JPEG

O JPEG 2000, comumente conhecido como J2K, é um padrão de compressão de imagem e sistema de codificação criado pelo comitê Joint Photographic Experts Group em 2000 com a intenção de substituir o padrão JPEG original. Ele foi desenvolvido para resolver algumas das limitações do padrão JPEG original e fornecer um novo conjunto de recursos que eram cada vez mais exigidos para várias aplicações. O JPEG 2000 não é apenas um padrão único, mas um conjunto de padrões, abrangidos pela família JPEG 2000 (ISO/IEC 15444).

Uma das principais vantagens do JPEG 2000 sobre o formato JPEG original é o uso da transformação wavelet em vez da transformação discreta de cosseno (DCT). A transformação wavelet permite taxas de compressão mais altas sem o mesmo grau de artefatos visíveis que podem estar presentes em imagens JPEG. Isso é particularmente benéfico para aplicações de imagem de alta resolução e alta qualidade, como imagens de satélite, imagens médicas, cinema digital e armazenamento de arquivos, onde a qualidade da imagem é de extrema importância.

O JPEG 2000 suporta compressão sem perdas e com perdas dentro de uma única arquitetura de compressão. A compressão sem perdas é obtida usando uma transformação wavelet reversível, que garante que os dados da imagem original possam ser perfeitamente reconstruídos a partir da imagem compactada. A compressão com perdas, por outro lado, usa uma transformação wavelet irreversível para atingir taxas de compressão mais altas, descartando algumas das informações menos importantes dentro da imagem.

Outro recurso significativo do JPEG 2000 é o suporte à transmissão progressiva de imagens, também conhecida como decodificação progressiva. Isso significa que a imagem pode ser decodificada e exibida em resoluções mais baixas e gradualmente aumentada para resolução total à medida que mais dados se tornam disponíveis. Isso é particularmente útil para aplicativos com largura de banda limitada, como navegação na Web ou aplicativos móveis, onde é benéfico exibir uma versão de qualidade inferior da imagem rapidamente e melhorar a qualidade à medida que mais dados são recebidos.

O JPEG 2000 também introduz o conceito de regiões de interesse (ROI). Isso permite que diferentes partes da imagem sejam compactadas em diferentes níveis de qualidade. Por exemplo, em um cenário de imagem médica, a região que contém um recurso de diagnóstico pode ser compactada sem perdas ou com uma qualidade superior às áreas circundantes. Esse controle de qualidade seletivo pode ser muito importante em campos onde certas partes de uma imagem são mais importantes do que outras.

O formato de arquivo para imagens JPEG 2000 é JP2, que é um formato padronizado e extensível que inclui os dados da imagem e metadados. O formato JP2 usa a extensão de arquivo .jp2 e pode conter uma ampla gama de informações, incluindo informações de espaço de cores, níveis de resolução e informações de propriedade intelectual. Além disso, o JPEG 2000 suporta o formato JPM (para imagens compostas, como documentos contendo texto e imagens) e o formato MJ2 para sequências de movimento, semelhante a um arquivo de vídeo.

O JPEG 2000 emprega um esquema de codificação sofisticado conhecido como EBCOT (Codificação de Bloco Embutido com Truncamento Otimizado). O EBCOT oferece várias vantagens, incluindo maior resiliência a erros e a capacidade de ajustar a compressão para atingir o equilíbrio desejado entre qualidade de imagem e tamanho do arquivo. O algoritmo EBCOT divide a imagem em pequenos blocos, chamados blocos de código, e codifica cada um independentemente. Isso permite a contenção de erros localizada no caso de corrupção de dados e facilita a transmissão progressiva de imagens.

O manuseio do espaço de cores no JPEG 2000 é mais flexível do que no padrão JPEG original. O JPEG 2000 suporta uma ampla gama de espaços de cores, incluindo tons de cinza, RGB, YCbCr e outros, bem como várias profundidades de bits, de imagens binárias até 16 bits por componente ou mais. Essa flexibilidade torna o JPEG 2000 adequado para uma variedade de aplicações e garante que ele possa lidar com as demandas de diferentes tecnologias de imagem.

O JPEG 2000 também inclui recursos de segurança robustos, como a capacidade de incluir criptografia e marca d'água digital no arquivo. Isso é particularmente importante para aplicativos onde a proteção de direitos autorais ou a autenticação de conteúdo são uma preocupação. A parte JPSEC (Segurança JPEG 2000) do padrão descreve esses recursos de segurança, fornecendo uma estrutura para distribuição segura de imagens.

Um dos desafios do JPEG 2000 é que ele é computacionalmente mais intensivo do que o padrão JPEG original. A complexidade da transformação wavelet e do esquema de codificação EBCOT significa que a codificação e decodificação de imagens JPEG 2000 requerem mais poder de processamento. Isso historicamente limitou sua adoção em eletrônicos de consumo e aplicativos da Web, onde a sobrecarga computacional pode ser um fator significativo. No entanto, à medida que o poder de processamento aumentou e o suporte de hardware especializado se tornou mais comum, essa limitação se tornou menos problemática.

Apesar de suas vantagens, o JPEG 2000 não teve ampla adoção em comparação com o formato JPEG original. Isso se deve em parte à onipresença do formato JPEG e ao vasto ecossistema de software e hardware que o suporta. Além disso, as questões de licenciamento e patente em torno do JPEG 2000 também dificultaram sua adoção. Algumas das tecnologias usadas no JPEG 2000 foram patenteadas, e a necessidade de gerenciar licenças para essas patentes o tornou menos atraente para alguns desenvolvedores e empresas.

Em termos de tamanho de arquivo, os arquivos JPEG 2000 são normalmente menores do que arquivos JPEG de qualidade equivalente. Isso se deve aos algoritmos de compressão mais eficientes usados no JPEG 2000, que podem reduzir com mais eficácia a redundância e a irrelevância nos dados da imagem. No entanto, a diferença no tamanho do arquivo pode variar dependendo do conteúdo da imagem e das configurações usadas para compressão. Para imagens com muitos detalhes finos ou altos níveis de ruído, a compressão superior do JPEG 2000 pode resultar em arquivos significativamente menores.

O JPEG 2000 também suporta mosaico, que divide a imagem em blocos menores e codificados independentemente. Isso pode ser útil para imagens muito grandes, como aquelas usadas em imagens de satélite ou aplicativos de mapeamento, pois permite uma codificação, decodificação e manuseio mais eficientes da imagem. Os usuários podem acessar e decodificar blocos individuais sem precisar processar a imagem inteira, o que pode economizar memória e requisitos de processamento.

A padronização do JPEG 2000 também inclui disposições para manuseio de metadados, que é um aspecto importante para sistemas de arquivamento e recuperação. O formato JPX, uma extensão do JP2, permite a inclusão de metadados extensos, incluindo caixas XML e UUID, que podem armazenar qualquer tipo de informação de metadados. Isso torna o JPEG 2000 uma boa escolha para aplicativos onde a preservação de metadados é importante, como bibliotecas digitais e museus.

Concluindo, o JPEG 2000 é um padrão de compressão de imagem sofisticado que oferece inúmeras vantagens sobre o formato JPEG original, incluindo taxas de compressão mais altas, decodificação progressiva, regiões de interesse e recursos de segurança robustos. Sua flexibilidade em termos de espaços de cores e profundidades de bits, bem como seu suporte a metadados, o tornam adequado para uma ampla gama de aplicações profissionais. No entanto, sua complexidade computacional e as questões iniciais de patente limitaram sua ampla adoção. Apesar disso, o JPEG 2000 continua sendo o formato de escolha em indústrias onde a qualidade da imagem e o conjunto de recursos são mais críticos do que a eficiência computacional ou ampla compatibilidade.

Formatos suportados

AAI.aai

Imagem AAI Dune

AI.ai

Adobe Illustrator CS2

AVIF.avif

Formato de arquivo de imagem AV1

BAYER.bayer

Imagem Bayer bruta

BMP.bmp

Imagem bitmap do Microsoft Windows

CIN.cin

Arquivo de imagem Cineon

CLIP.clip

Máscara de clip de imagem

CMYK.cmyk

Amostras brutas de ciano, magenta, amarelo e preto

CUR.cur

Ícone do Microsoft

DCX.dcx

Paintbrush multi-página IBM PC da ZSoft

DDS.dds

Superfície Direta do Microsoft DirectDraw

DPX.dpx

Imagem SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Superfície Direta do Microsoft DirectDraw

EPDF.epdf

Formato Portátil de Documento Encapsulado

EPI.epi

Formato de Intercâmbio PostScript Encapsulado da Adobe

EPS.eps

PostScript Encapsulado da Adobe

EPSF.epsf

PostScript Encapsulado da Adobe

EPSI.epsi

Formato de Intercâmbio PostScript Encapsulado da Adobe

EPT.ept

PostScript Encapsulado com pré-visualização TIFF

EPT2.ept2

PostScript Nível II Encapsulado com pré-visualização TIFF

EXR.exr

Imagem de alto alcance dinâmico (HDR)

FF.ff

Farbfeld

FITS.fits

Sistema de Transporte de Imagem Flexível

GIF.gif

Formato de intercâmbio de gráficos CompuServe

HDR.hdr

Imagem de alta faixa dinâmica

HEIC.heic

Container de imagem de alta eficiência

HRZ.hrz

Televisão de varredura lenta

ICO.ico

Ícone Microsoft

ICON.icon

Ícone Microsoft

J2C.j2c

Fluxo JPEG-2000

J2K.j2k

Fluxo JPEG-2000

JNG.jng

Gráficos de Rede JPEG

JP2.jp2

Sintaxe de Formato de Arquivo JPEG-2000

JPE.jpe

Formato JFIF do Grupo JPEG de Especialistas Fotográficos

JPEG.jpeg

Formato JFIF do Grupo JPEG de Especialistas Fotográficos

JPG.jpg

Formato JFIF do Grupo JPEG de Especialistas Fotográficos

JPM.jpm

Sintaxe de Formato de Arquivo JPEG-2000

JPS.jps

Formato JPS do Grupo JPEG de Especialistas Fotográficos

JPT.jpt

Sintaxe de Formato de Arquivo JPEG-2000

JXL.jxl

Imagem JPEG XL

MAP.map

Banco de dados de imagem contínua multi-resolução (MrSID)

MAT.mat

Formato de imagem MATLAB nível 5

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Formato bitmap 2D comum

PBM.pbm

Formato de bitmap portátil (preto e branco)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Formato Palm Database ImageViewer

PDF.pdf

Formato de Documento Portátil

PDFA.pdfa

Formato de Arquivo de Documento Portátil

PFM.pfm

Formato flutuante portátil

PGM.pgm

Formato portable graymap (escala de cinza)

PGX.pgx

Formato JPEG 2000 não compactado

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Formato JFIF do Grupo JPEG de Especialistas Fotográficos

PNG.png

Portable Network Graphics

PNG00.png00

PNG herdando profundidade de bits, tipo de cor da imagem original

PNG24.png24

24 bits RGB (zlib 1.2.11) opaco ou transparente binário

PNG32.png32

32 bits RGBA opaco ou transparente binário

PNG48.png48

48 bits RGB opaco ou transparente binário

PNG64.png64

64 bits RGBA opaco ou transparente binário

PNG8.png8

8 bits indexado opaco ou transparente binário

PNM.pnm

Portable anymap

PPM.ppm

Formato pixmap portátil (cor)

PS.ps

Arquivo PostScript da Adobe

PSB.psb

Formato de Documento Grande da Adobe

PSD.psd

Bitmap do Photoshop da Adobe

RGB.rgb

Amostras brutas de vermelho, verde e azul

RGBA.rgba

Amostras brutas de vermelho, verde, azul e alfa

RGBO.rgbo

Amostras brutas de vermelho, verde, azul e opacidade

SIX.six

Formato Gráfico SIXEL DEC

SUN.sun

Sun Rasterfile

SVG.svg

Gráficos Vetoriais Escaláveis

TIFF.tiff

Formato de Arquivo de Imagem Etiquetada

VDA.vda

Imagem Truevision Targa

VIPS.vips

Imagem VIPS

WBMP.wbmp

Imagem sem fio Bitmap (nível 0)

WEBP.webp

Formato de imagem WebP

YUV.yuv

CCIR 601 4:1:1 ou 4:2:2

Perguntas frequentes

Como isso funciona?

Este conversor é executado inteiramente no seu navegador. Ao selecionar um arquivo, ele é carregado na memória e convertido para o formato selecionado. Você pode baixar o arquivo convertido.

Quanto tempo leva para converter um arquivo?

As conversões começam instantaneamente e a maioria dos arquivos são convertidos em menos de um segundo. Arquivos maiores podem levar mais tempo.

O que acontece com meus arquivos?

Seus arquivos nunca são enviados para nossos servidores. Eles são convertidos no seu navegador e o arquivo convertido é baixado. Nunca vemos seus arquivos.

Quais tipos de arquivo posso converter?

Suportamos a conversão entre todos os formatos de imagem, incluindo JPEG, PNG, GIF, WebP, SVG, BMP, TIFF e muito mais.

Quanto isso custa?

Este conversor é completamente gratuito e sempre será gratuito. Como ele é executado no seu navegador, não precisamos pagar por servidores, então não precisamos cobrar de você.

Posso converter vários arquivos de uma vez?

Sim! Você pode converter quantos arquivos quiser de uma vez. Basta selecionar vários arquivos ao adicioná-los.