A remoção de fundo separa um objeto de seu ambiente para que você possa colocá-lo em transparência, trocar a cena ou compô-lo em um novo design. Nos bastidores, você está estimando uma máscara alfa—uma opacidade por pixel de 0 a 1—e então aplicando composição alfa ao primeiro plano sobre outra coisa. Esta é a matemática de Porter–Duff e a causa de problemas comuns como “franjas” e alfa reto vs. pré-multiplicado. Para orientação prática sobre pré-multiplicação e cor linear, consulte as notas do Win2D da Microsoft, Søren Sandmann e o artigo de Lomont sobre mistura linear.
Se você puder controlar a captura, pinte o fundo com uma cor sólida (geralmente verde) e remova esse tom. É rápido, testado e aprovado em filmes e transmissões, e ideal para vídeo. As desvantagens são a iluminação e o vestuário: a luz colorida vaza para as bordas (especialmente o cabelo), então você usará ferramentas de despill para neutralizar a contaminação. Boas referências incluem a documentação do Nuke, Mixing Light e uma demonstração prática do Fusion.
Para imagens únicas com fundos bagunçados, algoritmos interativos precisam de algumas dicas do usuário—por exemplo, um retângulo solto ou rabiscos—e geram uma máscara nítida. O método canônico é GrabCut (capítulo de livro), que aprende modelos de cores para primeiro plano/fundo e usa cortes de grafo iterativamente para separá-los. Você verá ideias semelhantes na Seleção de Primeiro Plano do GIMP baseada em SIOX (plugin ImageJ).
Matting resolve a transparência fracionária em limites finos (cabelo, pelo, fumaça, vidro). O matting de forma fechada clássico pega um trimap (definitivamente-primeiro plano/definitivamente-fundo/desconhecido) e resolve um sistema linear para alfa com forte precisão de borda. O matting de imagem profundo moderno treina redes neurais no conjunto de dados Adobe Composition-1K (documentos do MMEditing), e é avaliado com métricas como SAD, MSE, Gradiente e Conectividade (explicador de benchmark).
Trabalhos de segmentação relacionados também são úteis: DeepLabv3+ refina limites com um codificador-decodificador e convoluções atrous (PDF); Mask R-CNN fornece máscaras por instância (PDF); e SAM (Segment Anything) é um modelo de base controlável por prompt que gera máscaras sem necessidade de treinamento em imagens desconhecidas.
Trabalhos acadêmicos relatam erros de SAD, MSE, Gradiente e Conectividade em Composition-1K. Se você está escolhendo um modelo, procure por essas métricas (definições de métricas; seção de métricas do Background Matting). Para retratos/vídeo, MODNet e Background Matting V2 são potentes; para imagens gerais de “objetos salientes”, U2-Net é uma base sólida; para transparências difíceis, FBA pode apresentar resultados melhores.
Este conversor é executado inteiramente no seu navegador. Ao selecionar um arquivo, ele é carregado na memória e convertido para o formato selecionado. Você pode baixar o arquivo convertido.
As conversões começam instantaneamente e a maioria dos arquivos são convertidos em menos de um segundo. Arquivos maiores podem levar mais tempo.
Seus arquivos nunca são enviados para nossos servidores. Eles são convertidos no seu navegador e o arquivo convertido é baixado. Nunca vemos seus arquivos.
Suportamos a conversão entre todos os formatos de imagem, incluindo JPEG, PNG, GIF, WebP, SVG, BMP, TIFF e muito mais.
Este conversor é completamente gratuito e sempre será gratuito. Como ele é executado no seu navegador, não precisamos pagar por servidores, então não precisamos cobrar de você.
Sim! Você pode converter quantos arquivos quiser de uma vez. Basta selecionar vários arquivos ao adicioná-los.