Convert PNGs to JXLs
Drag and drop or click to select.
Private and secure
Everything happens in your browser. Your files never touch our servers.
Blazing fast
No uploading, no waiting. Convert the moment you drop a file.
Actually free
No account required. No hidden costs. No file size tricks.
What is the PNG format?
Portable Network Graphics
PNG, which stands for Portable Network Graphics, is a raster graphics file format that supports lossless data compression. Developed as an improved, non-patented replacement for Graphics Interchange Format (GIF), PNG was designed to transfer images on the Internet, not only for professional-quality graphics but also for photographs and other types of digital images. One of the most notable features of PNG is its support for transparency in browser-based applications, making it a crucial format in web design and development.
The inception of PNG can be traced back to 1995, following the patent issues surrounding the compression technique used in GIF format. A call for the creation of a new graphic format was made on the comp.graphics newsgroup, leading to the development of PNG. The main objectives for this new format were to improve upon and overcome the limitations of GIF. Among its goals were to support images with more than 256 colors, include an alpha channel for transparency, provide options for interlacing, and ensure the format was patent-free and suitable for open-source development.
PNG files excel in the quality of image preservation, supporting a range of color depths, from 1-bit black and white to 16-bit per channel for red, green, and blue (RGB). This wide range of color support makes PNG suitable for storing line drawings, text, and iconic graphics at a small file size. Additionally, PNG's support for an alpha channel allows for varying degrees of transparency, enabling intricate effects like shadows, glows, and semi-transparent objects to be rendered with precision in digital images.
One of the standout features of PNG is its lossless compression algorithm, defined using the DEFLATE method. This algorithm is designed to reduce the file size without sacrificing any image quality. The efficiency of the compression varies depending on the type of data being compressed; it is particularly effective for images with large areas of uniform color or repeated patterns. Despite the lossless nature of the compression, it's important to note that PNG might not always result in the smallest possible file size compared to formats like JPEG, especially for complex photographs.
The structure of a PNG file is based on chunks, where each chunk represents a certain kind of data or metadata about the image. There are four main types of chunks in a PNG file: IHDR (Image Header), which contains basic information about the image; PLTE (Palette), which lists all the colors used in indexed color images; IDAT (Image Data), which contains the actual image data compressed with the DEFLATE algorithm; and IEND (Image Trailer), which marks the end of the PNG file. Additional ancillary chunks can provide more details about the image, such as text annotations and gamma values.
PNG also incorporates several features aimed at improving the display and transfer of images over the internet. Interlacing, particularly using the Adam7 algorithm, allows an image to be loaded progressively, which can be especially useful when viewing images over slower internet connections. This technique displays a low-quality version of the entire image first, which gradually increases in quality as more data is downloaded. This feature not only enhances user experience but also provides a practical advantage for web usage.
Transparency in PNG files is handled in a more sophisticated manner compared to GIF. Whereas GIF supports simple binary transparency — a pixel is either fully transparent or fully opaque — PNG introduces the concept of alpha transparency. This allows pixels to have varying levels of transparency, from fully opaque to fully transparent, enabling smoother blending and transitions between the image and the background. This feature is particularly important for web designers who need to overlay images on backgrounds of varying colors and patterns.
Despite its many advantages, PNG does have some limitations. For instance, it is not the best choice for storing digital photographs in terms of file size efficiency. While PNG's lossless compression ensures no loss of quality, it can result in larger file sizes compared to lossy formats like JPEG, which are specifically designed for compressing photographs. This makes PNG less suitable for applications where bandwidth or storage capacity is limited. Additionally, PNG does not natively support animated images, a feature that formats like GIF and WebP offer.
Optimization techniques can be applied to PNG files to reduce their file size for web use without compromising image quality. Tools such as PNGCRUSH and OptiPNG employ various strategies, including choosing the most efficient compression parameters and reducing the color depth to the most appropriate level for the image. These tools can significantly reduce the size of PNG files, making them more efficient for web use, where loading times and bandwidth usage are critical concerns.
Furthermore, the inclusion of gamma correction information within PNG files ensures that images are displayed more consistently across different devices. Gamma correction helps adjust the brightness levels of an image according to the display device's characteristics. This feature is particularly valuable in the context of web graphics, where images may be viewed on a wide variety of devices with differing display properties.
The legal status of PNG has contributed to its wide acceptance and adoption. Being free of patents, PNG avoids the legal complexities and licensing fees associated with some other image formats. This has made it particularly attractive for open-source projects and applications where cost and legal freedom are important considerations. The format is supported by a broad range of software, including web browsers, image editing programs, and operating systems, facilitating its integration into various digital workflows.
Accessibility and compatibility are also key strengths of the PNG format. With its support for colors ranging from monochrome to truecolor with alpha transparency, PNG files can be used in a wide variety of applications, from simple web graphics to high-quality print materials. Its interoperability across different platforms and software ensures that images saved in PNG format can be easily shared and viewed without concern for compatibility issues.
Technical advancements and community contributions continue to enhance the PNG format. Innovations such as APNG (Animated Portable Network Graphics) introduce support for animation while maintaining backward compatibility with standard PNG viewers. This evolution reflects the format's adaptability and the active community's efforts to expand its capabilities in response to user needs. Such developments ensure the ongoing relevance of PNG in a rapidly evolving digital landscape.
In conclusion, the PNG image format has become a staple in digital image sharing and storage, striking a balance between quality preservation and file size efficiency. Its ability to support high color depths, alpha transparency, and lossless compression make it a versatile choice for a wide range of applications, from web design to archival storage. While it may not be the optimal choice for every situation, its strengths in quality, compatibility, and legal freedom make it an invaluable asset in the world of digital imaging.
What is the JXL format?
JPEG XL image
The JPEG XL (JXL) image format is a next-generation image coding standard that aims to surpass the capabilities of existing formats like JPEG, PNG, and GIF by providing superior compression efficiency, quality, and features. It is the result of a collaborative effort by the Joint Photographic Experts Group (JPEG) committee, which has been instrumental in the development of image compression standards. JPEG XL is designed to be a universal image format that can handle a wide range of use cases, from professional photography to web graphics.
One of the primary goals of JPEG XL is to provide high-quality image compression that can significantly reduce file sizes without compromising visual quality. This is achieved through a combination of advanced compression techniques and a modern coding framework. The format uses a modular approach, allowing it to incorporate various image processing operations such as color space conversions, tone mapping, and responsive resizing directly into the compression pipeline.
JPEG XL is built on the foundation of two previous image codecs: Google's PIK and Cloudinary's FUIF (Free Universal Image Format). These codecs introduced several innovations in image compression, which have been further refined and integrated into JPEG XL. The format is designed to be royalty-free, making it an attractive option for both software developers and content creators who require a cost-effective solution for image storage and distribution.
At the heart of JPEG XL's compression efficiency is its use of a modern entropy coding technique called asymmetric numeral systems (ANS). ANS is a form of arithmetic coding that provides near-optimal compression ratios by efficiently encoding the statistical distribution of image data. This allows JPEG XL to achieve better compression than traditional methods like Huffman coding, which is used in the original JPEG format.
JPEG XL also introduces a new color space called XYB (eXtra Y, Blue-yellow), which is designed to better align with human visual perception. The XYB color space allows for more efficient compression by prioritizing the components of an image that are more important to the human eye. This results in images that not only have smaller file sizes but also exhibit fewer compression artifacts, particularly in areas with subtle color variations.
Another key feature of JPEG XL is its support for high dynamic range (HDR) and wide color gamut (WCG) images. As display technologies evolve, there is an increasing demand for image formats that can handle the extended range of brightness and color that these new displays can produce. JPEG XL's native support for HDR and WCG ensures that images look vibrant and true-to-life on the latest screens, without the need for additional metadata or sidecar files.
JPEG XL is also designed with progressive decoding in mind. This means that an image can be displayed at a lower quality while it is still being downloaded, and the quality can improve progressively as more data becomes available. This feature is particularly useful for web browsing, where users may have varying internet speeds. It allows for a better user experience by providing a preview of the image without having to wait for the entire file to download.
In terms of backward compatibility, JPEG XL offers a unique feature called 'JPEG recompression'. This allows existing JPEG images to be recompressed into JPEG XL format without any additional loss of quality. The recompressed images are not only smaller in size but also retain all the original JPEG data, which means they can be converted back to the original JPEG format if needed. This makes JPEG XL an attractive option for archiving large collections of JPEG images, as it can significantly reduce storage requirements while preserving the ability to revert to the original files.
JPEG XL also addresses the need for responsive images on the web. With its ability to store multiple resolutions of an image within a single file, web developers can serve the most appropriate image size based on the user's device and screen resolution. This eliminates the need for separate image files for different resolutions and simplifies the process of creating responsive web designs.
For professional photographers and graphic designers, JPEG XL supports lossless compression, which ensures that every single bit of the original image data is preserved. This is crucial for applications where image integrity is paramount, such as in medical imaging, digital archives, and professional photo editing. The lossless mode of JPEG XL is also highly efficient, often resulting in smaller file sizes compared to other lossless formats like PNG or TIFF.
JPEG XL's feature set extends to include support for animation, similar to the GIF and WebP formats, but with much better compression and quality. This makes it a suitable replacement for GIFs on the web, providing smoother animations with a wider color palette and without the limitations of GIF's 256-color restriction.
The format also includes robust support for metadata, including EXIF, XMP, and ICC profiles, ensuring that important information about the image is preserved during compression. This metadata can include details such as camera settings, copyright information, and color management data, which are essential for both professional use and the preservation of digital heritage.
Security and privacy are also considered in the design of JPEG XL. The format does not allow for the inclusion of executable code, which reduces the risk of security vulnerabilities that can be exploited through images. Additionally, JPEG XL supports the stripping of sensitive metadata, which can help protect user privacy when sharing images online.
JPEG XL is designed to be future-proof, with a flexible container format that can be extended to support new features and technologies as they emerge. This ensures that the format can adapt to changing requirements and continue to serve as a universal image format for years to come.
In terms of adoption, JPEG XL is still in the early stages, with ongoing efforts to integrate support into web browsers, operating systems, and image editing software. As more platforms adopt the format, it is expected to gain traction as a replacement for older image formats, offering a combination of improved efficiency, quality, and features.
In conclusion, JPEG XL represents a significant advancement in image compression technology. Its combination of high compression efficiency, support for modern imaging features, and backward compatibility positions it as a strong candidate to become the new standard for image storage and transmission. As the format gains wider adoption, it has the potential to transform the way we create, share, and consume digital images, making them more accessible and enjoyable for everyone.
Supported formats
AAI.aai
AAI Dune image
AI.ai
Adobe Illustrator CS2
AVIF.avif
AV1 Image File Format
BAYER.bayer
Raw Bayer Image
BMP.bmp
Microsoft Windows bitmap image
CIN.cin
Cineon Image File
CLIP.clip
Image Clip Mask
CMYK.cmyk
Raw cyan, magenta, yellow, and black samples
CUR.cur
Microsoft icon
DCX.dcx
ZSoft IBM PC multi-page Paintbrush
DDS.dds
Microsoft DirectDraw Surface
DPX.dpx
SMTPE 268M-2003 (DPX 2.0) image
DXT1.dxt1
Microsoft DirectDraw Surface
EPDF.epdf
Encapsulated Portable Document Format
EPI.epi
Adobe Encapsulated PostScript Interchange format
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Adobe Encapsulated PostScript Interchange format
EPT.ept
Encapsulated PostScript with TIFF preview
EPT2.ept2
Encapsulated PostScript Level II with TIFF preview
EXR.exr
High dynamic-range (HDR) image
FF.ff
Farbfeld
FITS.fits
Flexible Image Transport System
GIF.gif
CompuServe graphics interchange format
HDR.hdr
High Dynamic Range image
HEIC.heic
High Efficiency Image Container
HRZ.hrz
Slow Scan TeleVision
ICO.ico
Microsoft icon
ICON.icon
Microsoft icon
J2C.j2c
JPEG-2000 codestream
J2K.j2k
JPEG-2000 codestream
JNG.jng
JPEG Network Graphics
JP2.jp2
JPEG-2000 File Format Syntax
JPE.jpe
Joint Photographic Experts Group JFIF format
JPEG.jpeg
Joint Photographic Experts Group JFIF format
JPG.jpg
Joint Photographic Experts Group JFIF format
JPM.jpm
JPEG-2000 File Format Syntax
JPS.jps
Joint Photographic Experts Group JPS format
JPT.jpt
JPEG-2000 File Format Syntax
JXL.jxl
JPEG XL image
MAP.map
Multi-resolution Seamless Image Database (MrSID)
MAT.mat
MATLAB level 5 image format
PAL.pal
Palm pixmap
PALM.palm
Palm pixmap
PAM.pam
Common 2-dimensional bitmap format
PBM.pbm
Portable bitmap format (black and white)
PCD.pcd
Photo CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Palm Database ImageViewer Format
PDF.pdf
Portable Document Format
PDFA.pdfa
Portable Document Archive Format
PFM.pfm
Portable float format
PGM.pgm
Portable graymap format (gray scale)
PGX.pgx
JPEG 2000 uncompressed format
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Joint Photographic Experts Group JFIF format
PNG.png
Portable Network Graphics
PNG00.png00
PNG inheriting bit-depth, color-type from original image
PNG24.png24
Opaque or binary transparent 24-bit RGB (zlib 1.2.11)
PNG32.png32
Opaque or binary transparent 32-bit RGBA
PNG48.png48
Opaque or binary transparent 48-bit RGB
PNG64.png64
Opaque or binary transparent 64-bit RGBA
PNG8.png8
Opaque or binary transparent 8-bit indexed
PNM.pnm
Portable anymap
PPM.ppm
Portable pixmap format (color)
PS.ps
Adobe PostScript file
PSB.psb
Adobe Large Document Format
PSD.psd
Adobe Photoshop bitmap
RGB.rgb
Raw red, green, and blue samples
RGBA.rgba
Raw red, green, blue, and alpha samples
RGBO.rgbo
Raw red, green, blue, and opacity samples
SIX.six
DEC SIXEL Graphics Format
SUN.sun
Sun Rasterfile
SVG.svg
Scalable Vector Graphics
TIFF.tiff
Tagged Image File Format
VDA.vda
Truevision Targa image
VIPS.vips
VIPS image
WBMP.wbmp
Wireless Bitmap (level 0) image
WEBP.webp
WebP Image Format
YUV.yuv
CCIR 601 4:1:1 or 4:2:2
Frequently asked questions
How does this work?
This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.
How long does it take to convert a file?
Conversions start instantly, and most files are converted in under a second. Larger files may take longer.
What happens to my files?
Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.
What file types can I convert?
We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.
How much does this cost?
This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.
Can I convert multiple files at once?
Yes! You can convert as many files as you want at once. Just select multiple files when you add them.