Convert GIFs to AVIFs

Unlimited conversions. Filesizes up to 2.5GB. For free, forever.

All local

Our converter runs in your browser, so we never see your data.

Blazing fast

No uploading your files to a server—conversions start instantly.

Secure by default

Unlike other converters, your files are never uploaded to us.

What is the GIF format?

CompuServe graphics interchange format

The Graphics Interchange Format (GIF) is a bitmap image format that was developed by a team at the online services provider CompuServe, led by American computer scientist Steve Wilhite on June 15, 1987. It is notable for being widely used on the World Wide Web due to its wide support and portability. The format supports up to 8 bits per pixel, allowing a single image to reference a palette of up to 256 distinct colors chosen from the 24-bit RGB color space. It also supports animations and allows a separate palette of up to 256 colors for each frame.

The GIF format was initially created to overcome the limitation of the existing file formats, which could not efficiently store multiple bitmapped color images. With the increasing popularity of the internet, there was a growing need for a format that could support high-quality images with file sizes small enough for downloading over slow internet connections. GIFs use a compression algorithm called LZW (Lempel-Ziv-Welch) to reduce file sizes without degrading the quality of the image. This algorithm is a form of lossless data compression that was a key factor in GIF's success.

The structure of a GIF file is comprised of several blocks, which can be broadly classified into three categories: the Header Block, which includes the signature and version; the Logical Screen Descriptor, which contains information about the screen where the image will be rendered, including its width, height, and color resolution; and a series of blocks that describe the image itself or the animation sequence. These latter blocks include the Global Color Table, Local Color Table, Image Descriptor, and Control Extension Blocks.

One of the most distinctive features of GIFs is their ability to include multiple images in a single file, which are displayed in sequence to create an animation effect. This is achieved through the use of Graphic Control Extension blocks, which allow for the specification of delay times between frames, providing control over the animation speed. Additionally, these blocks can be used to specify transparency by designating one of the colors in the color table as being transparent, which allows for the creation of animations with varying degrees of opacity.

While GIFs are celebrated for their simplicity and wide compatibility, the format has some limitations that have spurred the development and adoption of alternative formats. The most significant limitation is the 256-color palette, which can result in a noticeable reduction in color fidelity for images that contain more than 256 colors. This limitation makes GIFs less suitable for reproducing color photographs and other images with gradients, where formats like JPEG or PNG, which support millions of colors, are preferred.

Despite these limitations, GIFs remain prevalent due to their unique features that are not easily replicated by other formats, particularly their support for animations. Before the advent of more modern web technologies like CSS animations and JavaScript, GIFs were one of the easiest ways to create animated content for the web. This helped them to maintain a niche use case for web designers, marketers, and social media users who required simple animations to convey information or capture attention.

The standard for GIF files has evolved over time, with the original version, GIF87a, being superseded by GIF89a in 1989. The latter introduced several enhancements, including the ability to specify background colors and the introduction of the Graphic Control Extension, which made it possible to create looped animations. Despite these enhancements, the core aspects of the format, including its use of the LZW compression algorithm and its support for up to 8 bits per pixel, remained unchanged.

One controversial aspect of the GIF format has been the patentability of the LZW compression algorithm. In 1987, the United States Patent and Trademark Office issued a patent for the LZW algorithm to Unisys and IBM. This led to legal controversies in the late 1990s when Unisys and CompuServe announced plans to charge licensing fees for software that created GIF files. The situation led to widespread criticism from the online community and the eventual development of the Portable Network Graphics (PNG) format, which was designed as a free and open alternative to GIF that did not use LZW compression.

In addition to animations, the GIF format is often used to create small, detailed images for websites, such as logos, icons, and buttons. Its lossless compression ensures that these images retain their crispness and clarity, making GIF an excellent choice for web graphics that require precise pixel control. However, for high-resolution photographs or images with a wide range of colors, the JPEG format, which supports lossy compression, is more commonly used because it can significantly reduce file sizes while maintaining an acceptable level of quality.

Despite the emergence of advanced web technologies and formats, GIFs have experienced a resurgence in popularity in recent years, particularly on social media platforms. They are widely used for memes, reaction images, and short looping videos. This resurgence can be attributed to several factors, including the ease of creating and sharing GIFs, the nostalgia associated with the format, and its ability to convey emotions or reactions in a compact, easily digestible format.

The technical workings of the GIF format are relatively straightforward, making it accessible for programmers and non-programmers alike. A deep understanding of the format involves knowledge of its block structure, the way it encodes color through palettes, and its use of the LZW compression algorithm. This simplicity has made GIFs not only easy to create and manipulate with a variety of software tools but has also contributed to their widespread adoption and continued relevance in the fast-evolving digital landscape.

Looking forward, it is clear that GIFs will continue to play a role in the digital ecosystem, despite their technical limitations. New web standards and technologies, such as HTML5 and WebM video, offer alternatives for creating complex animations and video content with greater color depth and fidelity. However, the ubiquity of GIF support across web platforms, combined with the format's unique aesthetic and cultural significance, ensures that it remains a valuable tool for expressing creativity and humor online.

In conclusion, the GIF image format, with its long history and unique blend of simplicity, versatility, and cultural impact, occupies a special place in the world of digital media. Despite the technical challenges it faces and the emergence of superior alternatives in certain contexts, the GIF remains a beloved and widely used format. Its role in enabling the early web's visual culture, democratizing animation, and facilitating a new language of meme-driven communication cannot be overstated. As technology evolves, the GIF stands as a testament to the enduring power of well-designed digital formats to shape online interaction and expression.

What is the AVIF format?

AV1 Image File Format

AVIF (AV1 Image File Format) is a modern image file format that utilizes the AV1 video codec to provide superior compression efficiency compared to older formats like JPEG, PNG, and WebP. Developed by the Alliance for Open Media (AOMedia), AVIF aims to deliver high-quality images with smaller file sizes, making it an attractive choice for web developers and content creators looking to optimize their websites and applications.

At the core of AVIF is the AV1 video codec, which was designed as a royalty-free alternative to proprietary codecs like H.264 and HEVC. AV1 employs advanced compression techniques, such as intra-frame and inter-frame prediction, transform coding, and entropy coding, to achieve significant bitrate savings while maintaining visual quality. By leveraging AV1's intra-frame coding capabilities, AVIF can compress still images more efficiently than traditional formats.

One of the key features of AVIF is its support for both lossy and lossless compression. Lossy compression allows for higher compression ratios at the expense of some image quality, while lossless compression preserves the original image data without any loss of information. This flexibility enables developers to choose the appropriate compression mode based on their specific requirements, balancing file size and image fidelity.

AVIF also supports a wide range of color spaces and bit depths, making it suitable for various image types and use cases. It can handle both RGB and YUV color spaces, with bit depths ranging from 8 to 12 bits per channel. Additionally, AVIF supports high dynamic range (HDR) imaging, allowing for the representation of a broader range of luminance values and more vibrant colors. This capability is particularly beneficial for HDR displays and content.

Another significant advantage of AVIF is its ability to encode images with an alpha channel, enabling transparency. This feature is crucial for graphics and logos that require seamless integration with different background colors or patterns. AVIF's alpha channel support is more efficient compared to PNG, as it can compress the transparency information alongside the image data.

To create an AVIF image, the source image data is first divided into a grid of coding units, typically with a size of 64x64 pixels. Each coding unit is then further divided into smaller blocks, which are processed independently by the AV1 encoder. The encoder applies a sequence of compression techniques, such as prediction, transform coding, quantization, and entropy coding, to reduce the data size while preserving image quality.

During the prediction stage, the encoder uses intra-frame prediction to estimate the pixel values within a block based on the surrounding pixels. This process exploits spatial redundancy and helps to reduce the amount of data that needs to be encoded. Inter-frame prediction, which is used in video compression, is not applicable to still images like AVIF.

After prediction, the residual data (the difference between the predicted and actual pixel values) undergoes transform coding. The AV1 codec employs a set of discrete cosine transform (DCT) and asymmetric discrete sine transform (ADST) functions to convert the spatial domain data into the frequency domain. This step helps to concentrate the energy of the residual signal into fewer coefficients, making it more amenable to compression.

Quantization is then applied to the transformed coefficients to reduce the precision of the data. By discarding less significant information, quantization allows for higher compression ratios at the cost of some loss in image quality. The quantization parameters can be adjusted to control the trade-off between file size and image fidelity.

Finally, entropy coding techniques, such as arithmetic coding or variable-length coding, are used to compress the quantized coefficients further. These techniques assign shorter codes to more frequently occurring symbols, resulting in a more compact representation of the image data.

Once the encoding process is complete, the compressed image data is packaged into the AVIF container format, which includes metadata such as image dimensions, color space, and bit depth. The resulting AVIF file can then be stored or transmitted efficiently, taking up less storage space or bandwidth compared to other image formats.

To decode an AVIF image, the reverse process is followed. The decoder extracts the compressed image data from the AVIF container and applies entropy decoding to reconstruct the quantized coefficients. Inverse quantization and inverse transform coding are then performed to obtain the residual data. The predicted pixel values, derived from the intra-frame prediction, are added to the residual data to reconstruct the final image.

One of the challenges in adopting AVIF is its relatively recent introduction and limited browser support compared to established formats like JPEG and PNG. However, as more browsers and image processing tools begin to support AVIF natively, its adoption is expected to grow, driven by the increasing demand for efficient image compression.

To address compatibility issues, websites and applications can employ fallback mechanisms, serving AVIF images to compatible clients while providing alternative formats like JPEG or WebP for older browsers. This approach ensures that users can access the content regardless of their browser's support for AVIF.

In conclusion, AVIF is a promising image file format that leverages the power of the AV1 video codec to deliver superior compression efficiency. With its support for lossy and lossless compression, a wide range of color spaces and bit depths, HDR imaging, and alpha channel transparency, AVIF offers a versatile solution for optimizing images on the web. As browser support continues to expand and more tools embrace AVIF, it has the potential to become a preferred choice for developers and content creators seeking to reduce image file sizes without compromising visual quality.

Supported formats

AAI.aai

AAI Dune image

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Image File Format

AVS.avs

AVS X image

BAYER.bayer

Raw Bayer Image

BMP.bmp

Microsoft Windows bitmap image

CIN.cin

Cineon Image File

CLIP.clip

Image Clip Mask

CMYK.cmyk

Raw cyan, magenta, yellow, and black samples

CMYKA.cmyka

Raw cyan, magenta, yellow, black, and alpha samples

CUR.cur

Microsoft icon

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) image

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Encapsulated Portable Document Format

EPI.epi

Adobe Encapsulated PostScript Interchange format

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange format

EPT.ept

Encapsulated PostScript with TIFF preview

EPT2.ept2

Encapsulated PostScript Level II with TIFF preview

EXR.exr

High dynamic-range (HDR) image

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Flexible Image Transport System

GIF.gif

CompuServe graphics interchange format

GIF87.gif87

CompuServe graphics interchange format (version 87a)

GROUP4.group4

Raw CCITT Group4

HDR.hdr

High Dynamic Range image

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Microsoft icon

ICON.icon

Microsoft icon

IPL.ipl

IP2 Location Image

J2C.j2c

JPEG-2000 codestream

J2K.j2k

JPEG-2000 codestream

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 File Format Syntax

JPC.jpc

JPEG-2000 codestream

JPE.jpe

Joint Photographic Experts Group JFIF format

JPEG.jpeg

Joint Photographic Experts Group JFIF format

JPG.jpg

Joint Photographic Experts Group JFIF format

JPM.jpm

JPEG-2000 File Format Syntax

JPS.jps

Joint Photographic Experts Group JPS format

JPT.jpt

JPEG-2000 File Format Syntax

JXL.jxl

JPEG XL image

MAP.map

Multi-resolution Seamless Image Database (MrSID)

MAT.mat

MATLAB level 5 image format

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Common 2-dimensional bitmap format

PBM.pbm

Portable bitmap format (black and white)

PCD.pcd

Photo CD

PCDS.pcds

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer Format

PDF.pdf

Portable Document Format

PDFA.pdfa

Portable Document Archive Format

PFM.pfm

Portable float format

PGM.pgm

Portable graymap format (gray scale)

PGX.pgx

JPEG 2000 uncompressed format

PICON.picon

Personal Icon

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF format

PNG.png

Portable Network Graphics

PNG00.png00

PNG inheriting bit-depth, color-type from original image

PNG24.png24

Opaque or binary transparent 24-bit RGB (zlib 1.2.11)

PNG32.png32

Opaque or binary transparent 32-bit RGBA

PNG48.png48

Opaque or binary transparent 48-bit RGB

PNG64.png64

Opaque or binary transparent 64-bit RGBA

PNG8.png8

Opaque or binary transparent 8-bit indexed

PNM.pnm

Portable anymap

PPM.ppm

Portable pixmap format (color)

PS.ps

Adobe PostScript file

PSB.psb

Adobe Large Document Format

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

Raw red, green, and blue samples

RGBA.rgba

Raw red, green, blue, and alpha samples

RGBO.rgbo

Raw red, green, blue, and opacity samples

SIX.six

DEC SIXEL Graphics Format

SUN.sun

Sun Rasterfile

SVG.svg

Scalable Vector Graphics

SVGZ.svgz

Compressed Scalable Vector Graphics

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision Targa image

VIPS.vips

VIPS image

WBMP.wbmp

Wireless Bitmap (level 0) image

WEBP.webp

WebP Image Format

YUV.yuv

CCIR 601 4:1:1 or 4:2:2

Frequently asked questions

How does this work?

This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.

How long does it take to convert a file?

Conversions start instantly, and most files are converted in under a second. Larger files may take longer.

What happens to my files?

Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.

What file types can I convert?

We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.

How much does this cost?

This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.

Can I convert multiple files at once?

Yes! You can convert as many files as you want at once. Just select multiple files when you add them.