Convert AVIFs to WEBPs

Unlimited conversions. Filesizes up to 2.5GB. For free, forever.

Private and secure

Everything happens in your browser. Your files never touch our servers.

Blazing fast

No uploading, no waiting. Convert the moment you drop a file.

Actually free

No account required. No hidden costs. No file size tricks.

What is the AVIF format?

AV1 Image File Format

AVIF (AV1 Image File Format) is a modern image file format that utilizes the AV1 video codec to provide superior compression efficiency compared to older formats like JPEG, PNG, and WebP. Developed by the Alliance for Open Media (AOMedia), AVIF aims to deliver high-quality images with smaller file sizes, making it an attractive choice for web developers and content creators looking to optimize their websites and applications.

At the core of AVIF is the AV1 video codec, which was designed as a royalty-free alternative to proprietary codecs like H.264 and HEVC. AV1 employs advanced compression techniques, such as intra-frame and inter-frame prediction, transform coding, and entropy coding, to achieve significant bitrate savings while maintaining visual quality. By leveraging AV1's intra-frame coding capabilities, AVIF can compress still images more efficiently than traditional formats.

One of the key features of AVIF is its support for both lossy and lossless compression. Lossy compression allows for higher compression ratios at the expense of some image quality, while lossless compression preserves the original image data without any loss of information. This flexibility enables developers to choose the appropriate compression mode based on their specific requirements, balancing file size and image fidelity.

AVIF also supports a wide range of color spaces and bit depths, making it suitable for various image types and use cases. It can handle both RGB and YUV color spaces, with bit depths ranging from 8 to 12 bits per channel. Additionally, AVIF supports high dynamic range (HDR) imaging, allowing for the representation of a broader range of luminance values and more vibrant colors. This capability is particularly beneficial for HDR displays and content.

Another significant advantage of AVIF is its ability to encode images with an alpha channel, enabling transparency. This feature is crucial for graphics and logos that require seamless integration with different background colors or patterns. AVIF's alpha channel support is more efficient compared to PNG, as it can compress the transparency information alongside the image data.

To create an AVIF image, the source image data is first divided into a grid of coding units, typically with a size of 64x64 pixels. Each coding unit is then further divided into smaller blocks, which are processed independently by the AV1 encoder. The encoder applies a sequence of compression techniques, such as prediction, transform coding, quantization, and entropy coding, to reduce the data size while preserving image quality.

During the prediction stage, the encoder uses intra-frame prediction to estimate the pixel values within a block based on the surrounding pixels. This process exploits spatial redundancy and helps to reduce the amount of data that needs to be encoded. Inter-frame prediction, which is used in video compression, is not applicable to still images like AVIF.

After prediction, the residual data (the difference between the predicted and actual pixel values) undergoes transform coding. The AV1 codec employs a set of discrete cosine transform (DCT) and asymmetric discrete sine transform (ADST) functions to convert the spatial domain data into the frequency domain. This step helps to concentrate the energy of the residual signal into fewer coefficients, making it more amenable to compression.

Quantization is then applied to the transformed coefficients to reduce the precision of the data. By discarding less significant information, quantization allows for higher compression ratios at the cost of some loss in image quality. The quantization parameters can be adjusted to control the trade-off between file size and image fidelity.

Finally, entropy coding techniques, such as arithmetic coding or variable-length coding, are used to compress the quantized coefficients further. These techniques assign shorter codes to more frequently occurring symbols, resulting in a more compact representation of the image data.

Once the encoding process is complete, the compressed image data is packaged into the AVIF container format, which includes metadata such as image dimensions, color space, and bit depth. The resulting AVIF file can then be stored or transmitted efficiently, taking up less storage space or bandwidth compared to other image formats.

To decode an AVIF image, the reverse process is followed. The decoder extracts the compressed image data from the AVIF container and applies entropy decoding to reconstruct the quantized coefficients. Inverse quantization and inverse transform coding are then performed to obtain the residual data. The predicted pixel values, derived from the intra-frame prediction, are added to the residual data to reconstruct the final image.

One of the challenges in adopting AVIF is its relatively recent introduction and limited browser support compared to established formats like JPEG and PNG. However, as more browsers and image processing tools begin to support AVIF natively, its adoption is expected to grow, driven by the increasing demand for efficient image compression.

To address compatibility issues, websites and applications can employ fallback mechanisms, serving AVIF images to compatible clients while providing alternative formats like JPEG or WebP for older browsers. This approach ensures that users can access the content regardless of their browser's support for AVIF.

In conclusion, AVIF is a promising image file format that leverages the power of the AV1 video codec to deliver superior compression efficiency. With its support for lossy and lossless compression, a wide range of color spaces and bit depths, HDR imaging, and alpha channel transparency, AVIF offers a versatile solution for optimizing images on the web. As browser support continues to expand and more tools embrace AVIF, it has the potential to become a preferred choice for developers and content creators seeking to reduce image file sizes without compromising visual quality.

What is the WEBP format?

WebP Image Format

The WEBP image format, developed by Google, establishes itself as a modern image format designed to offer superior compression for images on the web, enabling web pages to load faster while maintaining high-quality visuals. This is achieved through the use of both lossy and lossless compression techniques. Lossy compression reduces file size by irreversibly eliminating some image data, particularly in areas where the human eye is unlikely to detect a difference, while lossless compression reduces file size without sacrificing any image detail, employing data compression algorithms to eliminate redundant information.

One of the primary advantages of the WEBP format is its ability to significantly reduce the file size of images compared to traditional formats like JPEG and PNG, without a noticeable loss in quality. This is particularly beneficial for web developers and content creators who aim to optimize site performance and loading times, which can directly impact user experience and SEO rankings. Moreover, smaller image files mean reduced bandwidth usage, which can lower hosting costs and improve accessibility for users with limited data plans or slower internet connections.

The technical foundation of WEBP is based on the VP8 video codec, which compresses the RGB (red, green, blue) components of an image using techniques such as prediction, transformation, and quantization. Prediction is used to guess the values of pixels based on neighboring pixels, transformation converts the image data into a format that is easier to compress, and quantization reduces the precision of the image's colors to decrease file size. For lossless compression, WEBP uses advanced techniques like spatial prediction to encode image data without losing any detail.

WEBP supports a wide range of features that make it versatile for various applications. One notable feature is its support for transparency, also known as alpha channel, which allows images to have variable opacity and transparent backgrounds. This feature is particularly useful for web design and user interface elements, where images need to blend seamlessly with different backgrounds. Additionally, WEBP supports animation, enabling it to serve as an alternative to animated GIFs with better compression and quality. This makes it a suitable choice for creating lightweight, high-quality animated content for the web.

Another significant aspect of the WEBP format is its compatibility and support across various platforms and browsers. As of my last update, most modern web browsers, including Google Chrome, Firefox, and Microsoft Edge, natively support WEBP, allowing for direct display of WEBP images without the need for additional software or plugins. However, some older browsers and certain environments might not fully support it, which has led developers to implement fallback solutions, such as serving images in JPEG or PNG format to browsers that do not support WEBP.

Implementing WEBP for web projects involves a few considerations regarding workflow and compatibility. When converting images to WEBP, it's important to maintain the original files in their native formats for archival purposes or situations where WEBP may not be the most appropriate choice. Developers can automate the conversion process using various tools and libraries available for different programming languages and environments. This automation is vital for maintaining an efficient workflow, especially for projects with a large number of images.

The conversion quality settings when transitioning images to WEBP format are critical in balancing the trade-off between file size and visual fidelity. These settings can be adjusted to fit the specific needs of the project, whether prioritizing smaller file sizes for faster loading times or higher quality images for visual impact. It's also crucial to test the visual quality and loading performance across different devices and network conditions, ensuring that the use of WEBP enhances the user experience without introducing unintended issues.

Despite its numerous advantages, the WEBP format also faces challenges and criticism. Some professionals in graphic design and photography prefer formats that offer higher color depth and broader color gamuts, such as TIFF or RAW, for certain applications. Moreover, the process of converting existing image libraries to WEBP can be time-consuming and may not always result in significant improvements in file size or quality, depending on the nature of the original images and the settings used for conversion.

The future of the WEBP format and its adoption hinge on broader support across all platforms and continued improvements in compression algorithms. As internet technologies evolve, the demand for formats that can deliver high-quality visuals with minimal file sizes will continue to grow. The introduction of new formats and improvements to existing ones, including WEBP, are essential in meeting these needs. Ongoing development efforts promise enhancements in compression efficiency, quality, and the integration of new features, such as improved support for high dynamic range (HDR) images and extended color spaces.

In conclusion, the WEBP image format represents a significant advancement in web image optimization, offering a balance between file size reduction and visual quality. Its versatility, including support for transparency and animation, makes it a comprehensive solution for modern web applications. However, the transition to WEBP requires careful consideration of compatibility, workflow, and the specific needs of each project. As the web continues to evolve, formats like WEBP play a critical role in shaping the future of online media, driving better performance, enhanced quality, and improved user experiences.

Supported formats

AAI.aai

AAI Dune image

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Image File Format

BAYER.bayer

Raw Bayer Image

BMP.bmp

Microsoft Windows bitmap image

CIN.cin

Cineon Image File

CLIP.clip

Image Clip Mask

CMYK.cmyk

Raw cyan, magenta, yellow, and black samples

CUR.cur

Microsoft icon

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) image

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Encapsulated Portable Document Format

EPI.epi

Adobe Encapsulated PostScript Interchange format

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange format

EPT.ept

Encapsulated PostScript with TIFF preview

EPT2.ept2

Encapsulated PostScript Level II with TIFF preview

EXR.exr

High dynamic-range (HDR) image

FF.ff

Farbfeld

FITS.fits

Flexible Image Transport System

GIF.gif

CompuServe graphics interchange format

HDR.hdr

High Dynamic Range image

HEIC.heic

High Efficiency Image Container

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Microsoft icon

ICON.icon

Microsoft icon

J2C.j2c

JPEG-2000 codestream

J2K.j2k

JPEG-2000 codestream

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 File Format Syntax

JPE.jpe

Joint Photographic Experts Group JFIF format

JPEG.jpeg

Joint Photographic Experts Group JFIF format

JPG.jpg

Joint Photographic Experts Group JFIF format

JPM.jpm

JPEG-2000 File Format Syntax

JPS.jps

Joint Photographic Experts Group JPS format

JPT.jpt

JPEG-2000 File Format Syntax

JXL.jxl

JPEG XL image

MAP.map

Multi-resolution Seamless Image Database (MrSID)

MAT.mat

MATLAB level 5 image format

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Common 2-dimensional bitmap format

PBM.pbm

Portable bitmap format (black and white)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer Format

PDF.pdf

Portable Document Format

PDFA.pdfa

Portable Document Archive Format

PFM.pfm

Portable float format

PGM.pgm

Portable graymap format (gray scale)

PGX.pgx

JPEG 2000 uncompressed format

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF format

PNG.png

Portable Network Graphics

PNG00.png00

PNG inheriting bit-depth, color-type from original image

PNG24.png24

Opaque or binary transparent 24-bit RGB (zlib 1.2.11)

PNG32.png32

Opaque or binary transparent 32-bit RGBA

PNG48.png48

Opaque or binary transparent 48-bit RGB

PNG64.png64

Opaque or binary transparent 64-bit RGBA

PNG8.png8

Opaque or binary transparent 8-bit indexed

PNM.pnm

Portable anymap

PPM.ppm

Portable pixmap format (color)

PS.ps

Adobe PostScript file

PSB.psb

Adobe Large Document Format

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

Raw red, green, and blue samples

RGBA.rgba

Raw red, green, blue, and alpha samples

RGBO.rgbo

Raw red, green, blue, and opacity samples

SIX.six

DEC SIXEL Graphics Format

SUN.sun

Sun Rasterfile

SVG.svg

Scalable Vector Graphics

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision Targa image

VIPS.vips

VIPS image

WBMP.wbmp

Wireless Bitmap (level 0) image

WEBP.webp

WebP Image Format

YUV.yuv

CCIR 601 4:1:1 or 4:2:2

Frequently asked questions

How does this work?

This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.

How long does it take to convert a file?

Conversions start instantly, and most files are converted in under a second. Larger files may take longer.

What happens to my files?

Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.

What file types can I convert?

We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.

How much does this cost?

This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.

Can I convert multiple files at once?

Yes! You can convert as many files as you want at once. Just select multiple files when you add them.