View EXIF metadata for any PCD

Unlimited images. Filesizes up to 2.5GB. For free, forever.

All local

Our converter runs in your browser, so we never see your data.

Blazing fast

No uploading your files to a server—conversions start instantly.

Secure by default

Unlike other converters, your files are never uploaded to us.

EXIF, or Exchangeable Image File Format, is a standard that specifies the formats for images, sound, and ancillary tags used by digital cameras (including smartphones), scanners and other systems handling image and sound files recorded by digital cameras. This format allows metadata to be saved within the image file itself, and this metadata can include a variety of information about the photo, including the date and time it was taken, the camera settings used, and GPS information.

The EXIF standard encompasses a wide range of metadata, including technical data about the camera such as the model, the aperture, shutter speed, and focal length. This information can be incredibly useful for photographers who want to review the shooting conditions of specific photos. EXIF data also includes more detailed tags for things like whether the flash was used, the exposure mode, metering mode, white balance settings, and even lens information.

EXIF metadata also includes information about the image itself such as the resolution, orientation and whether the image has been modified. Some cameras and smartphones also have the ability to include GPS (Global Positioning System) information in the EXIF data, recording the exact location where the photo was taken, which can be useful for categorizing and cataloguing images.

However, it is important to note that EXIF data can pose privacy risks, because it can reveal more information than intended to third parties. For example, publishing a photo with GPS location data intact could inadvertently reveal one's home address or other sensitive locations. Because of this, many social media platforms remove EXIF data from images when they are uploaded. Nevertheless, many photo editing and organizing software give users the option to view, edit, or remove EXIF data.

EXIF data serves as a comprehensive resource for photographers and digital content creators, providing a wealth of information about how a particular photo was taken. Whether it's used to learn from shooting conditions, to sort through large collections of images, or to provide accurate geotagging for field work, EXIF data proves extremely valuable. However, the potential privacy implications should be considered when sharing images with embedded EXIF data. As such, knowing how to manage this data is an important skill in the digital age.

Frequently Asked Questions

What is EXIF data?

EXIF, or Exchangeable Image File Format, data includes various metadata about a photo such as camera settings, date and time the photo was taken, and potentially even location, if GPS is enabled.

How can I view EXIF data?

Most image viewers and editors (such as Adobe Photoshop, Windows Photo Viewer, etc.) allow you to view EXIF data. You simply have to open the properties or info panel.

Can EXIF data be edited?

Yes, EXIF data can be edited using certain software programs like Adobe Photoshop, Lightroom, or easy-to-use online resources. You can adjust or delete specific EXIF metadata fields with these tools.

Is there any privacy risk associated with EXIF data?

Yes. If GPS is enabled, location data embedded in the EXIF metadata could reveal sensitive geographical information about where the photo was taken. It's thus advised to remove or obfuscate this data when sharing photos.

How can I remove EXIF data?

Many software programs allow you to remove EXIF data. This process is often known as 'stripping' EXIF data. There exist several online tools that offer this functionality as well.

Do social media sites keep the EXIF data?

Most social media platforms like Facebook, Instagram, and Twitter automatically strip EXIF data from images to maintain user privacy.

What types of information does EXIF data provide?

EXIF data can include camera model, date and time of capture, focal length, exposure time, aperture, ISO setting, white balance setting, and GPS location, among other details.

Why is EXIF data useful for photographers?

For photographers, EXIF data can help understand exact settings used for a particular photograph. This information can help in improving techniques or replicating similar conditions in future shots.

Can all images contain EXIF data?

No, only images taken on devices that support EXIF metadata, like digital cameras and smartphones, will contain EXIF data.

Is there a standard format for EXIF data?

Yes, EXIF data follows a standard set by the Japan Electronic Industries Development Association (JEIDA). However, specific manufacturers may include additional proprietary information.

What is the PCD format?

Photo CD

The Photo CD (PCD) image format is a type of digital image format that was developed by Eastman Kodak in the early 1990s. The primary purpose of the PCD format was to allow users to store high-resolution digital photographs on a CD, which could then be viewed on a computer or a television using a dedicated Photo CD player. The PCD format was part of Kodak's broader strategy to bridge the gap between traditional film photography and the emerging digital photography market. It was designed to offer photographers and consumers a convenient way to digitize and archive their film images with high fidelity.

One of the key features of the PCD format is its use of a multiscale resolution structure, which allows a single PCD file to contain multiple resolutions of the same image. This structure is based on a proprietary image compression technique developed by Kodak known as PhotoYCC. The PhotoYCC color space is similar to the YCbCr color space used in video compression, where Y represents the luminance component, and Cb and Cr represent the chrominance components. This color space is particularly suited for photographic images because it separates the brightness information from the color information, which aligns well with the way the human visual system processes images.

The multiscale resolution structure of PCD files includes five different resolution levels, ranging from a base/preview resolution of 192x128 pixels to a maximum resolution of 3072x2048 pixels. These resolutions are referred to as Base/16, Base/4, Base, 4Base, and 16Base, with the Base resolution being 768x512 pixels. This allows for various uses, from thumbnail previews to high-quality prints. The different resolutions are stored in a hierarchical format, enabling software and hardware to quickly access the appropriate resolution level for a given task without having to process the entire image file.

PCD files are typically created using a Kodak Photo CD system, which involves scanning film negatives or slides using a high-resolution scanner and then writing the digital images to a CD in the PCD format. The scanning process is carefully calibrated to ensure accurate color reproduction and to capture the full dynamic range of the film. The resulting PCD files are intended to be a digital archive of the film images, with the ability to produce high-quality prints and to be easily shared and viewed on various devices.

The PCD format also incorporates a number of metadata fields that store information about the image and the scanning process. This metadata can include the date and time the image was captured, the type of film used, the scanner settings, and other relevant details. This information can be valuable for archival purposes, as well as for photographers who wish to keep track of the technical aspects of their images.

Despite its advanced features and the high image quality it offered, the PCD format faced several challenges that limited its widespread adoption. One of the main challenges was the proprietary nature of the format, which meant that it could only be fully utilized with Kodak's own software and hardware. This limited compatibility with third-party software and devices made it less attractive to consumers and professionals who were already using other image formats and editing software.

Another challenge for the PCD format was the rapid evolution of digital camera technology and the increasing availability of affordable digital cameras. As digital cameras became more capable and offered higher resolutions, the need to scan film images became less critical for many users. Additionally, the emergence of other digital image formats, such as JPEG and TIFF, which were more open and widely supported, provided users with more flexible and accessible options for storing and sharing digital images.

Despite these challenges, the PCD format was used by some professional photographers and enthusiasts who appreciated the high image quality and the ability to digitize film with a high degree of fidelity. For a period of time, it was also used by photo labs and service providers who offered film scanning and archiving services. However, as the digital photography market continued to grow and evolve, the use of the PCD format gradually declined.

From a technical perspective, the PCD format is notable for its use of the aforementioned PhotoYCC color space and its multiscale resolution structure. The format uses a lossy compression algorithm to reduce the file size while maintaining a high level of image quality. The compression is applied in such a way that it takes advantage of the human visual system's characteristics, emphasizing the preservation of luminance detail over chrominance detail, which is less noticeable to the human eye.

The PCD file structure is composed of several different sections, including a header, image directories for each resolution level, and the image data itself. The header contains information about the file format version and the number of images stored on the CD. Each image directory contains metadata about the image, as well as pointers to the location of the image data for that resolution level within the file.

The image data in a PCD file is stored in a tiled format, with the image divided into small rectangular sections called tiles. Each tile is compressed independently, which allows for more efficient data access and manipulation. This tiling system also facilitates the hierarchical storage of different resolution levels, as lower-resolution images can be constructed by combining and downsampling the tiles from higher-resolution levels.

To view or edit PCD files, users typically need specialized software that can read the PCD format and handle its multiscale resolution structure. Kodak provided its own software for this purpose, but there were also third-party software solutions that offered varying degrees of support for PCD files. Some modern image editing software still includes support for the PCD format, although it is less common than support for more widely used formats like JPEG and TIFF.

In terms of file size, PCD files can be quite large, especially at the highest resolution levels. This is because the format is designed to preserve the quality of the original film image, which requires a significant amount of data. However, the compression algorithm used in PCD files does help to mitigate the file size to some extent, making it more manageable to store and transfer the images.

The PCD format also includes support for a feature called 'Photo CD Portfolio,' which allows users to organize and manage their images on a CD in a structured way. This feature includes the ability to create albums, categorize images, and add descriptive text to each image. The Portfolio feature was intended to make it easier for users to navigate and enjoy their digital photo collections.

In conclusion, the PCD image format was an innovative solution for digitizing and archiving film photographs during the transition period from analog to digital photography. Its multiscale resolution structure, use of the PhotoYCC color space, and high image quality made it a valuable tool for professionals and enthusiasts who required high-fidelity digital copies of their film images. However, the proprietary nature of the format, along with the rapid advancements in digital camera technology and the rise of more flexible digital image formats, ultimately led to the decline of the PCD format. Today, it remains a part of the history of digital photography, and its technical aspects continue to be of interest to those studying the evolution of digital image storage and compression.

Supported formats

AAI.aai

AAI Dune image

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Image File Format

AVS.avs

AVS X image

BAYER.bayer

Raw Bayer Image

BMP.bmp

Microsoft Windows bitmap image

CIN.cin

Cineon Image File

CLIP.clip

Image Clip Mask

CMYK.cmyk

Raw cyan, magenta, yellow, and black samples

CMYKA.cmyka

Raw cyan, magenta, yellow, black, and alpha samples

CUR.cur

Microsoft icon

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) image

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Encapsulated Portable Document Format

EPI.epi

Adobe Encapsulated PostScript Interchange format

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange format

EPT.ept

Encapsulated PostScript with TIFF preview

EPT2.ept2

Encapsulated PostScript Level II with TIFF preview

EXR.exr

High dynamic-range (HDR) image

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Flexible Image Transport System

GIF.gif

CompuServe graphics interchange format

GIF87.gif87

CompuServe graphics interchange format (version 87a)

GROUP4.group4

Raw CCITT Group4

HDR.hdr

High Dynamic Range image

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Microsoft icon

ICON.icon

Microsoft icon

IPL.ipl

IP2 Location Image

J2C.j2c

JPEG-2000 codestream

J2K.j2k

JPEG-2000 codestream

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 File Format Syntax

JPC.jpc

JPEG-2000 codestream

JPE.jpe

Joint Photographic Experts Group JFIF format

JPEG.jpeg

Joint Photographic Experts Group JFIF format

JPG.jpg

Joint Photographic Experts Group JFIF format

JPM.jpm

JPEG-2000 File Format Syntax

JPS.jps

Joint Photographic Experts Group JPS format

JPT.jpt

JPEG-2000 File Format Syntax

JXL.jxl

JPEG XL image

MAP.map

Multi-resolution Seamless Image Database (MrSID)

MAT.mat

MATLAB level 5 image format

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Common 2-dimensional bitmap format

PBM.pbm

Portable bitmap format (black and white)

PCD.pcd

Photo CD

PCDS.pcds

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer Format

PDF.pdf

Portable Document Format

PDFA.pdfa

Portable Document Archive Format

PFM.pfm

Portable float format

PGM.pgm

Portable graymap format (gray scale)

PGX.pgx

JPEG 2000 uncompressed format

PICON.picon

Personal Icon

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF format

PNG.png

Portable Network Graphics

PNG00.png00

PNG inheriting bit-depth, color-type from original image

PNG24.png24

Opaque or binary transparent 24-bit RGB (zlib 1.2.11)

PNG32.png32

Opaque or binary transparent 32-bit RGBA

PNG48.png48

Opaque or binary transparent 48-bit RGB

PNG64.png64

Opaque or binary transparent 64-bit RGBA

PNG8.png8

Opaque or binary transparent 8-bit indexed

PNM.pnm

Portable anymap

PPM.ppm

Portable pixmap format (color)

PS.ps

Adobe PostScript file

PSB.psb

Adobe Large Document Format

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

Raw red, green, and blue samples

RGBA.rgba

Raw red, green, blue, and alpha samples

RGBO.rgbo

Raw red, green, blue, and opacity samples

SIX.six

DEC SIXEL Graphics Format

SUN.sun

Sun Rasterfile

SVG.svg

Scalable Vector Graphics

SVGZ.svgz

Compressed Scalable Vector Graphics

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision Targa image

VIPS.vips

VIPS image

WBMP.wbmp

Wireless Bitmap (level 0) image

WEBP.webp

WebP Image Format

YUV.yuv

CCIR 601 4:1:1 or 4:2:2

Frequently asked questions

How does this work?

This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.

How long does it take to convert a file?

Conversions start instantly, and most files are converted in under a second. Larger files may take longer.

What happens to my files?

Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.

What file types can I convert?

We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.

How much does this cost?

This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.

Can I convert multiple files at once?

Yes! You can convert as many files as you want at once. Just select multiple files when you add them.