View EXIF metadata for any FF

Unlimited images. Filesizes up to 2.5GB. For free, forever.

Private and secure

Everything happens in your browser. Your files never touch our servers.

Blazing fast

No uploading, no waiting. Convert the moment you drop a file.

Actually free

No account required. No hidden costs. No file size tricks.

EXIF (Exchangeable Image File Format) is the block of capture metadata that cameras and phones embed into image files—exposure, lens, timestamps, even GPS—using a TIFF-style tag system packaged inside formats like JPEG and TIFF. It’s essential for searchability, sorting, and automation across photo libraries and workflows, but it can also be an inadvertent leak path if shared carelessly (ExifTool andExiv2 make this easy to inspect).

At a low level, EXIF reuses TIFF’s Image File Directory (IFD) structure and, in JPEG, lives inside the APP1 marker (0xFFE1), effectively nesting a little TIFF inside a JPEG container (JFIF overview;CIPA spec portal). The official specification—CIPA DC-008 (EXIF), currently at 3.x—documents the IFD layout, tag types, and constraints (CIPA DC-008;spec summary). EXIF defines a dedicated GPS sub-IFD (tag 0x8825) and an Interoperability IFD (0xA005) (Exif tag tables).

Packaging details matter. Typical JPEGs start with a JFIF APP0 segment, followed by EXIF in APP1; older readers expect JFIF first, while modern libraries happily parse both (APP segment notes). Real-world parsers sometimes assume APP order or size limits that the spec doesn’t require, which is why tool authors document quirks and edge cases (Exiv2 metadata guide;ExifTool docs).

EXIF isn’t confined to JPEG/TIFF. The PNG ecosystem standardized the eXIf chunk to carry EXIF in PNG (support is growing, and chunk ordering relative to IDAT can matter in some implementations). WebP, a RIFF-based format, accommodates EXIF, XMP, and ICC in dedicated chunks (WebP RIFF container;libwebp). On Apple platforms, Image I/O preserves EXIF when converting to HEIC/HEIF, alongside XMP and maker data (kCGImagePropertyExifDictionary).

If you’ve ever wondered how apps infer camera settings, EXIF’s tag map is the answer: Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode, and more live in the primary and EXIF sub-IFDs (Exif tags;Exiv2 tags). Apple exposes these via Image I/O constants like ExifFNumber and GPSDictionary. On Android, AndroidX ExifInterface reads/writes EXIF across JPEG, PNG, WebP, and HEIF.

Orientation, Time, and Other Gotchas

Orientation deserves special mention. Most devices store pixels “as shot” and record a tag telling viewers how to rotate on display. That’s tag 274 (Orientation) with values like 1 (normal), 6 (90° CW), 3 (180°), 8 (270°). Failure to honor or update this tag leads to sideways photos, thumbnail mismatches, and downstream ML errors (Orientation tag;practical guide). Pipelines often normalize by physically rotating pixels and setting Orientation=1(ExifTool).

Timekeeping is trickier than it looks. Historic tags like DateTimeOriginal lack timezone, which makes cross-border shoots ambiguous. Newer tags add timezone companions—e.g., OffsetTimeOriginal—so software can record DateTimeOriginal plus a UTC offset (e.g., -07:00) for sane ordering and geocorrelation (OffsetTime* tags;tag overview).

EXIF vs. IPTC vs. XMP

EXIF coexists—and sometimes overlaps—with IPTC Photo Metadata (titles, creators, rights, subjects) and XMP, Adobe’s RDF-based framework standardized as ISO 16684-1. In practice, well-behaved software reconciles camera-authored EXIF with user-authored IPTC/XMP without discarding either (IPTC guidance;LoC on XMP;LoC on EXIF).

Privacy & Security

Privacy is where EXIF gets controversial. Geotags and device serials have outed sensitive locations more than once; a canonical example is the 2012 Vice photo of John McAfee, where EXIF GPS coordinates reportedly revealed his whereabouts (Wired;The Guardian). Many social platforms remove most EXIF on upload, but behavior varies and changes over time—verify by downloading your own posts and inspecting them with a tool (Twitter media help;Facebook help;Instagram help).

Security researchers also watch EXIF parsers closely. Vulnerabilities in widely used libraries (e.g., libexif) have included buffer overflows and OOB reads triggered by malformed tags—easy to craft because EXIF is structured binary in a predictable place (advisories;NVD search). Keep your metadata libraries patched and sandbox image processing if you ingest untrusted files.

Practical Workflow Tips

  • Be deliberate about location: disable camera geotagging when appropriate, or strip GPS on export; keep a private original if you need the data later (ExifTool;Exiv2 CLI).
  • Normalize orientation and timestamps in pipelines, ideally writing physical rotation and removing ambiguous tags (or adding OffsetTime*). (Orientation;OffsetTime*).
  • Preserve descriptive metadata (credits/rights) by mapping EXIF↔IPTC↔XMP according to current IPTC guidance and prefer XMP for rich, extensible fields.
  • For PNG/WebP/HEIF, verify your libraries actually read/write the modern EXIF/XMP locations; don’t assume parity with JPEG (PNG eXIf;WebP container;Image I/O).
  • Keep dependencies updated; metadata is a frequent parser attack surface (libexif advisories).

Used thoughtfully, EXIF is connective tissue that powers photo catalogs, rights workflows, and computer-vision pipelines; used naively, it’s a breadcrumb trail you might not mean to share. The good news: the ecosystem—specs, OS APIs, and tools—gives you the control you need (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).

Further reading & references

Frequently Asked Questions

What is EXIF data?

EXIF, or Exchangeable Image File Format, data includes various metadata about a photo such as camera settings, date and time the photo was taken, and potentially even location, if GPS is enabled.

How can I view EXIF data?

Most image viewers and editors (such as Adobe Photoshop, Windows Photo Viewer, etc.) allow you to view EXIF data. You simply have to open the properties or info panel.

Can EXIF data be edited?

Yes, EXIF data can be edited using certain software programs like Adobe Photoshop, Lightroom, or easy-to-use online resources. You can adjust or delete specific EXIF metadata fields with these tools.

Is there any privacy risk associated with EXIF data?

Yes. If GPS is enabled, location data embedded in the EXIF metadata could reveal sensitive geographical information about where the photo was taken. It's thus advised to remove or obfuscate this data when sharing photos.

How can I remove EXIF data?

Many software programs allow you to remove EXIF data. This process is often known as 'stripping' EXIF data. There exist several online tools that offer this functionality as well.

Do social media sites keep the EXIF data?

Most social media platforms like Facebook, Instagram, and Twitter automatically strip EXIF data from images to maintain user privacy.

What types of information does EXIF data provide?

EXIF data can include camera model, date and time of capture, focal length, exposure time, aperture, ISO setting, white balance setting, and GPS location, among other details.

Why is EXIF data useful for photographers?

For photographers, EXIF data can help understand exact settings used for a particular photograph. This information can help in improving techniques or replicating similar conditions in future shots.

Can all images contain EXIF data?

No, only images taken on devices that support EXIF metadata, like digital cameras and smartphones, will contain EXIF data.

Is there a standard format for EXIF data?

Yes, EXIF data follows a standard set by the Japan Electronic Industries Development Association (JEIDA). However, specific manufacturers may include additional proprietary information.

What is the FF format?

Farbfeld

The FF (Fast Format) image format is a relatively new entry into the digital image encoding sphere, designed specifically to cater to the increasing demand for high-speed processing and transfer of images across various devices and platforms. Unlike traditional formats such as JPEG, PNG, or GIF, the FF format emphasizes rapid loading times, minimal data loss during compression, and a flexible structure that supports a wide range of image types from highly detailed photographs to simple graphics. Its development is a response to the evolving needs of the internet and digital imaging technologies, where speed and efficiency have become paramount.

One of the foundational aspects of the FF format is its unique compression algorithm, which balances the need for quality and speed. The algorithm employs a combination of lossy and lossless compression techniques, adjusting dynamically to the content of the image to ensure optimal performance. For detailed images with a wide color range, FF format utilizes a sophisticated lossy compression method that reduces file size significantly without a noticeable decline in quality. Conversely, for simpler graphics with fewer colors, it applies lossless compression, preserving the sharpness and clarity of the original image.

The structure of an FF file is designed to be both robust and flexible, supporting various metadata types and color spaces. At its core, the format uses a container that can house multiple data streams, including the image data, color profile information, and any additional metadata such as copyright notices or GPS data. This modular approach not only facilitates richer image information but also enhances compatibility with different devices and software, ensuring that the images can be accurately displayed and processed regardless of the platform.

A distinctive feature of the FF format is its support for high dynamic range (HDR) and wide color gamut (WCG) images, which are becoming increasingly popular in photography, cinema, and even smartphones. The FF format's architecture allows it to store images with a higher bit depth and a broader range of colors, enabling more detailed and vibrant images. This capability is particularly important for professionals in photography and visual media, where color accuracy and image fidelity are crucial.

Another critical aspect of the FF format is its focus on speed, particularly in terms of decoding and rendering images on devices. The format is designed to take advantage of modern hardware, including GPUs and multi-core CPUs, to accelerate image processing tasks. It incorporates parallel processing techniques and efficient coding structures that enable fast decoding and rendering, even for high-resolution images. This makes the FF format particularly suitable for applications where speed is of the essence, such as real-time video streaming, online gaming graphics, and responsive web design.

The FF format also addresses the issue of image security and copyright protection, an increasingly important concern in the digital age. It includes built-in support for encryption and digital watermarking, allowing content creators to secure their images against unauthorized use. The encryption feature enables secure transmission of images over the internet, while digital watermarking helps in tracking and managing copyright infringement. These security measures are seamlessly integrated into the FF format, ensuring that they do not compromise the speed or quality of the images.

Interoperability is another key strength of the FF format. It is designed to work seamlessly across a wide range of operating systems, devices, and browsers without the need for specialized plugins or converters. This universal compatibility is achieved through open standards and a wide adoption strategy that involves collaboration with device manufacturers, software developers, and online platforms. By ensuring that the FF format can be easily integrated into existing ecosystems, its developers aim to facilitate its widespread adoption and use.

The integration of advanced image processing features such as automatic color correction, image stabilization, and noise reduction further sets the FF format apart from its contemporaries. These features are powered by artificial intelligence and machine learning algorithms that analyze the content of the image and apply corrections or enhancements as needed. Such capabilities not only improve the visual quality of the images but also simplify the post-processing workflow for photographers and graphic designers, saving time and effort.

Despite its numerous benefits, the adoption of the FF format faces challenges, mainly due to the existing dominance of established image formats and the inertia associated with migrating to a new format. However, its developers and proponents are actively working to overcome these obstacles through education, demonstrating the FF format's advantages and providing easy-to-use tools for conversion and integration. As more users experience the benefits of the FF format firsthand, its adoption is expected to grow, gradually replacing or complementing traditional image formats.

The FF format also has potential applications beyond just static images. Its efficient compression algorithm and fast processing capabilities make it an excellent choice for animated graphics and short video clips. This adaptability opens up new possibilities for web design, digital advertising, and social media content, where engaging visuals are crucial for attracting and retaining viewers' attention. By extending its reach into these areas, the FF format could revolutionize how visual content is created and consumed online.

Environmental impact is an increasingly important consideration in digital technology, and here too, the FF format has advantages. Its efficiency not only saves processing time and energy but also reduces the storage space required for images, leading to lower data center energy consumption. In an age where digital footprints are closely scrutinized for their environmental implications, the adoption of the FF format can contribute to more sustainable computing practices.

The development of the FF format is a testament to the ongoing innovation in the field of digital imaging. It represents a significant step forward in addressing the needs of modern users and platforms, from the perspective of speed, quality, security, and interoperability. With its unique combination of features, the FF format is poised to become a key player in the future of digital imaging, reshaping how images are stored, shared, and viewed in an increasingly connected and visually-driven world.

In conclusion, the FF image format represents a groundbreaking development in the realm of digital imaging, offering a comprehensive solution that addresses the current limitations of traditional image formats. By combining high speed, efficiency, quality, and a range of advanced features, the FF format meets the evolving needs of photographers, designers, and content creators, as well as the requirements of modern digital platforms. As it gains adoption, the FF format is set to change the landscape of digital imaging, heralding a new era of visual content that is faster, more vibrant, and more secure than ever before.

Supported formats

AAI.aai

AAI Dune image

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Image File Format

BAYER.bayer

Raw Bayer Image

BMP.bmp

Microsoft Windows bitmap image

CIN.cin

Cineon Image File

CLIP.clip

Image Clip Mask

CMYK.cmyk

Raw cyan, magenta, yellow, and black samples

CUR.cur

Microsoft icon

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) image

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Encapsulated Portable Document Format

EPI.epi

Adobe Encapsulated PostScript Interchange format

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange format

EPT.ept

Encapsulated PostScript with TIFF preview

EPT2.ept2

Encapsulated PostScript Level II with TIFF preview

EXR.exr

High dynamic-range (HDR) image

FF.ff

Farbfeld

FITS.fits

Flexible Image Transport System

GIF.gif

CompuServe graphics interchange format

HDR.hdr

High Dynamic Range image

HEIC.heic

High Efficiency Image Container

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Microsoft icon

ICON.icon

Microsoft icon

J2C.j2c

JPEG-2000 codestream

J2K.j2k

JPEG-2000 codestream

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 File Format Syntax

JPE.jpe

Joint Photographic Experts Group JFIF format

JPEG.jpeg

Joint Photographic Experts Group JFIF format

JPG.jpg

Joint Photographic Experts Group JFIF format

JPM.jpm

JPEG-2000 File Format Syntax

JPS.jps

Joint Photographic Experts Group JPS format

JPT.jpt

JPEG-2000 File Format Syntax

JXL.jxl

JPEG XL image

MAP.map

Multi-resolution Seamless Image Database (MrSID)

MAT.mat

MATLAB level 5 image format

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Common 2-dimensional bitmap format

PBM.pbm

Portable bitmap format (black and white)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer Format

PDF.pdf

Portable Document Format

PDFA.pdfa

Portable Document Archive Format

PFM.pfm

Portable float format

PGM.pgm

Portable graymap format (gray scale)

PGX.pgx

JPEG 2000 uncompressed format

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF format

PNG.png

Portable Network Graphics

PNG00.png00

PNG inheriting bit-depth, color-type from original image

PNG24.png24

Opaque or binary transparent 24-bit RGB (zlib 1.2.11)

PNG32.png32

Opaque or binary transparent 32-bit RGBA

PNG48.png48

Opaque or binary transparent 48-bit RGB

PNG64.png64

Opaque or binary transparent 64-bit RGBA

PNG8.png8

Opaque or binary transparent 8-bit indexed

PNM.pnm

Portable anymap

PPM.ppm

Portable pixmap format (color)

PS.ps

Adobe PostScript file

PSB.psb

Adobe Large Document Format

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

Raw red, green, and blue samples

RGBA.rgba

Raw red, green, blue, and alpha samples

RGBO.rgbo

Raw red, green, blue, and opacity samples

SIX.six

DEC SIXEL Graphics Format

SUN.sun

Sun Rasterfile

SVG.svg

Scalable Vector Graphics

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision Targa image

VIPS.vips

VIPS image

WBMP.wbmp

Wireless Bitmap (level 0) image

WEBP.webp

WebP Image Format

YUV.yuv

CCIR 601 4:1:1 or 4:2:2

Frequently asked questions

How does this work?

This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.

How long does it take to convert a file?

Conversions start instantly, and most files are converted in under a second. Larger files may take longer.

What happens to my files?

Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.

What file types can I convert?

We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.

How much does this cost?

This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.

Can I convert multiple files at once?

Yes! You can convert as many files as you want at once. Just select multiple files when you add them.