View EXIF metadata for any EPSI

Unlimited images. Filesizes up to 2.5GB. For free, forever.

Private and secure

Everything happens in your browser. Your files never touch our servers.

Blazing fast

No uploading, no waiting. Convert the moment you drop a file.

Actually free

No account required. No hidden costs. No file size tricks.

EXIF (Exchangeable Image File Format) is the block of capture metadata that cameras and phones embed into image files—exposure, lens, timestamps, even GPS—using a TIFF-style tag system packaged inside formats like JPEG and TIFF. It’s essential for searchability, sorting, and automation across photo libraries and workflows, but it can also be an inadvertent leak path if shared carelessly (ExifTool andExiv2 make this easy to inspect).

At a low level, EXIF reuses TIFF’s Image File Directory (IFD) structure and, in JPEG, lives inside the APP1 marker (0xFFE1), effectively nesting a little TIFF inside a JPEG container (JFIF overview;CIPA spec portal). The official specification—CIPA DC-008 (EXIF), currently at 3.x—documents the IFD layout, tag types, and constraints (CIPA DC-008;spec summary). EXIF defines a dedicated GPS sub-IFD (tag 0x8825) and an Interoperability IFD (0xA005) (Exif tag tables).

Packaging details matter. Typical JPEGs start with a JFIF APP0 segment, followed by EXIF in APP1; older readers expect JFIF first, while modern libraries happily parse both (APP segment notes). Real-world parsers sometimes assume APP order or size limits that the spec doesn’t require, which is why tool authors document quirks and edge cases (Exiv2 metadata guide;ExifTool docs).

EXIF isn’t confined to JPEG/TIFF. The PNG ecosystem standardized the eXIf chunk to carry EXIF in PNG (support is growing, and chunk ordering relative to IDAT can matter in some implementations). WebP, a RIFF-based format, accommodates EXIF, XMP, and ICC in dedicated chunks (WebP RIFF container;libwebp). On Apple platforms, Image I/O preserves EXIF when converting to HEIC/HEIF, alongside XMP and maker data (kCGImagePropertyExifDictionary).

If you’ve ever wondered how apps infer camera settings, EXIF’s tag map is the answer: Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode, and more live in the primary and EXIF sub-IFDs (Exif tags;Exiv2 tags). Apple exposes these via Image I/O constants like ExifFNumber and GPSDictionary. On Android, AndroidX ExifInterface reads/writes EXIF across JPEG, PNG, WebP, and HEIF.

Orientation, Time, and Other Gotchas

Orientation deserves special mention. Most devices store pixels “as shot” and record a tag telling viewers how to rotate on display. That’s tag 274 (Orientation) with values like 1 (normal), 6 (90° CW), 3 (180°), 8 (270°). Failure to honor or update this tag leads to sideways photos, thumbnail mismatches, and downstream ML errors (Orientation tag;practical guide). Pipelines often normalize by physically rotating pixels and setting Orientation=1(ExifTool).

Timekeeping is trickier than it looks. Historic tags like DateTimeOriginal lack timezone, which makes cross-border shoots ambiguous. Newer tags add timezone companions—e.g., OffsetTimeOriginal—so software can record DateTimeOriginal plus a UTC offset (e.g., -07:00) for sane ordering and geocorrelation (OffsetTime* tags;tag overview).

EXIF vs. IPTC vs. XMP

EXIF coexists—and sometimes overlaps—with IPTC Photo Metadata (titles, creators, rights, subjects) and XMP, Adobe’s RDF-based framework standardized as ISO 16684-1. In practice, well-behaved software reconciles camera-authored EXIF with user-authored IPTC/XMP without discarding either (IPTC guidance;LoC on XMP;LoC on EXIF).

Privacy & Security

Privacy is where EXIF gets controversial. Geotags and device serials have outed sensitive locations more than once; a canonical example is the 2012 Vice photo of John McAfee, where EXIF GPS coordinates reportedly revealed his whereabouts (Wired;The Guardian). Many social platforms remove most EXIF on upload, but behavior varies and changes over time—verify by downloading your own posts and inspecting them with a tool (Twitter media help;Facebook help;Instagram help).

Security researchers also watch EXIF parsers closely. Vulnerabilities in widely used libraries (e.g., libexif) have included buffer overflows and OOB reads triggered by malformed tags—easy to craft because EXIF is structured binary in a predictable place (advisories;NVD search). Keep your metadata libraries patched and sandbox image processing if you ingest untrusted files.

Practical Workflow Tips

  • Be deliberate about location: disable camera geotagging when appropriate, or strip GPS on export; keep a private original if you need the data later (ExifTool;Exiv2 CLI).
  • Normalize orientation and timestamps in pipelines, ideally writing physical rotation and removing ambiguous tags (or adding OffsetTime*). (Orientation;OffsetTime*).
  • Preserve descriptive metadata (credits/rights) by mapping EXIF↔IPTC↔XMP according to current IPTC guidance and prefer XMP for rich, extensible fields.
  • For PNG/WebP/HEIF, verify your libraries actually read/write the modern EXIF/XMP locations; don’t assume parity with JPEG (PNG eXIf;WebP container;Image I/O).
  • Keep dependencies updated; metadata is a frequent parser attack surface (libexif advisories).

Used thoughtfully, EXIF is connective tissue that powers photo catalogs, rights workflows, and computer-vision pipelines; used naively, it’s a breadcrumb trail you might not mean to share. The good news: the ecosystem—specs, OS APIs, and tools—gives you the control you need (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).

Further reading & references

Frequently Asked Questions

What is EXIF data?

EXIF, or Exchangeable Image File Format, data includes various metadata about a photo such as camera settings, date and time the photo was taken, and potentially even location, if GPS is enabled.

How can I view EXIF data?

Most image viewers and editors (such as Adobe Photoshop, Windows Photo Viewer, etc.) allow you to view EXIF data. You simply have to open the properties or info panel.

Can EXIF data be edited?

Yes, EXIF data can be edited using certain software programs like Adobe Photoshop, Lightroom, or easy-to-use online resources. You can adjust or delete specific EXIF metadata fields with these tools.

Is there any privacy risk associated with EXIF data?

Yes. If GPS is enabled, location data embedded in the EXIF metadata could reveal sensitive geographical information about where the photo was taken. It's thus advised to remove or obfuscate this data when sharing photos.

How can I remove EXIF data?

Many software programs allow you to remove EXIF data. This process is often known as 'stripping' EXIF data. There exist several online tools that offer this functionality as well.

Do social media sites keep the EXIF data?

Most social media platforms like Facebook, Instagram, and Twitter automatically strip EXIF data from images to maintain user privacy.

What types of information does EXIF data provide?

EXIF data can include camera model, date and time of capture, focal length, exposure time, aperture, ISO setting, white balance setting, and GPS location, among other details.

Why is EXIF data useful for photographers?

For photographers, EXIF data can help understand exact settings used for a particular photograph. This information can help in improving techniques or replicating similar conditions in future shots.

Can all images contain EXIF data?

No, only images taken on devices that support EXIF metadata, like digital cameras and smartphones, will contain EXIF data.

Is there a standard format for EXIF data?

Yes, EXIF data follows a standard set by the Japan Electronic Industries Development Association (JEIDA). However, specific manufacturers may include additional proprietary information.

What is the EPSI format?

Adobe Encapsulated PostScript Interchange format

The EPSI (Encapsulated PostScript Interchange) image format is a specialized version of the EPS format, designed to encapsulate PostScript files along with a preview image. This format is particularly valuable in environments where PostScript content needs to be visualized without directly rendering the PostScript code itself. The presence of a preview image enables applications and systems that do not understand PostScript to display a visual representation of the content. This duality makes EPSI exceptionally versatile in the realms of printing, publishing, and design, where it bridges the gap between complex graphical designs and their representation across diverse software platforms.

At its core, an EPSI file consists of two main components: the PostScript code and the preview image. The PostScript code is a programming language developed by Adobe Systems to describe the appearance of text, graphical shapes, and images on printed material. It is highly powerful and flexible, capable of describing complex layouts and typographies with precision. The preview image, on the other hand, is typically saved in a binary or ASCII format, serving as a quick visual reference of the PostScript content. This bifurcation enables users to interact with the file in a more intuitive manner, providing a bridge between the abstract PostScript commands and their visual outcomes.

The EPSI format's compatibility with a wide range of software is one of its most compelling features. Because EPSI files contain both the original PostScript data and a preview image, they can be seamlessly integrated into both vector-based and raster-based workflows. This makes EPSI files ideal for use in graphic design, desktop publishing, and online content creation, where they can be handled by a variety of tools such as Adobe Illustrator, Photoshop, and other graphic design software. Additionally, the format's support across different operating systems further enhances its usability in a multi-platform world.

Creating and editing EPSI files requires a nuanced understanding of both PostScript programming and image editing. The process typically begins with the creation of a graphical design or layout in a vector-based design tool. Once the design is finalized, it is exported as a PostScript file. This file is then encapsulated into the EPSI format along with a preview image. The preview image can be generated in various ways, depending on the software used, but it generally represents a rasterized version of the PostScript content. This dual nature of EPSI files necessitates a careful balance between precision in the PostScript code and the visual fidelity of the preview image.

One of the technical challenges inherent to the EPSI format is maintaining the sync between the PostScript content and the preview image. Because the PostScript part of the file can contain complex and dynamically generated graphics, ensuring that the preview image accurately represents this content can be difficult. This issue becomes especially pronounced in scenarios where the PostScript content is edited after the initial creation of the EPSI file. In such cases, the preview image needs to be regenerated to reflect the updated content, a process that can introduce discrepancies if not handled with precision.

The flexibility of the EPSI format extends to its ability to support various levels of image quality in the preview. Depending on the intended use of the file, the quality of the preview image can be adjusted to balance between visual clarity and file size. For instances where the EPSI file is intended for quick viewing or online sharing, a lower-quality, smaller-size preview may be preferred. Conversely, for high-end printing or detailed review, a high-resolution preview is necessary to accurately represent the underlying PostScript content. This level of flexibility allows users to tailor the format to their specific needs, making it highly adaptable across different use cases.

Despite its strengths, the EPSI format is not without its limitations. One significant drawback is the file size, which can be considerably larger than other image formats. This is primarily due to the dual nature of the file, containing both the complete PostScript code and a preview image. In environments where storage or bandwidth is a concern, the EPSI format might not be the ideal choice. Moreover, the complexity of the PostScript language means that creating and editing EPSI files requires a higher level of technical skill, potentially limiting its accessibility for non-experts.

The interplay between PostScript and the preview image in an EPSI file also has implications for security. PostScript, being a programming language, allows for the execution of code which can potentially be exploited for malicious purposes. When distributing EPSI files, it is crucial to ensure that the PostScript content is from a trusted source to mitigate security risks. This aspect necessitates caution and due diligence when handling EPSI files, especially in sensitive or secure environments.

In terms of file compatibility and future-proofing, the EPSI format benefits from its basis in PostScript, a well-established and widely supported language. However, the evolving landscape of graphic design and publishing software may pose challenges to its continued relevance. As newer formats and technologies emerge, the need for formats like EPSI that cater primarily to print and high-end design may diminish. This potential decrease in relevance highlights the importance of maintaining and updating legacy systems and files to ensure compatibility with modern software ecosystems.

From a technical standpoint, optimizing EPSI files for performance and compatibility involves several considerations. One key aspect is the selection of the correct resolution for the preview image, which must strike a balance between visual quality and file size. Additionally, when creating the PostScript content, employing efficient coding practices can help reduce the overall file size and improve rendering times. This includes optimizing vector paths, minimizing the use of complex patterns or gradients, and avoiding unnecessary repetition of elements within the PostScript code.

The process of converting traditional EPS files to the EPSI format highlights the adaptability of the format. By appending a preview image to an existing EPS file, users can transform it into an EPSI file that retains all the robust capabilities of PostScript while gaining the added benefit of previewability across various platforms. This conversion process involves generating an appropriate preview image and encapsulating it with the PostScript code in a way that conforms to the EPSI specification. This capability underscores the flexibility and enduring value of the EPSI format within the graphic design and publishing domains.

In conclusion, the EPSI image format stands as a bridge between the complex, programming-driven world of PostScript and the visually oriented sphere of graphical design and publishing. Its unique combination of a preview image with PostScript content offers a blend of precision, versatility, and compatibility that is hard to match with other formats. While it comes with its own set of challenges, such as file size considerations and the need for technical expertise, the benefits it brings to the table—especially in terms of print quality and cross-platform consistency—make it a valuable tool in the arsenal of designers, publishers, and print professionals alike. As technology continues to evolve, the role and functionality of the EPSI format may shift, but its core value proposition as a comprehensive and flexible image format is likely to remain relevant for many years to come.

Supported formats

AAI.aai

AAI Dune image

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Image File Format

BAYER.bayer

Raw Bayer Image

BMP.bmp

Microsoft Windows bitmap image

CIN.cin

Cineon Image File

CLIP.clip

Image Clip Mask

CMYK.cmyk

Raw cyan, magenta, yellow, and black samples

CUR.cur

Microsoft icon

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) image

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Encapsulated Portable Document Format

EPI.epi

Adobe Encapsulated PostScript Interchange format

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange format

EPT.ept

Encapsulated PostScript with TIFF preview

EPT2.ept2

Encapsulated PostScript Level II with TIFF preview

EXR.exr

High dynamic-range (HDR) image

FF.ff

Farbfeld

FITS.fits

Flexible Image Transport System

GIF.gif

CompuServe graphics interchange format

HDR.hdr

High Dynamic Range image

HEIC.heic

High Efficiency Image Container

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Microsoft icon

ICON.icon

Microsoft icon

J2C.j2c

JPEG-2000 codestream

J2K.j2k

JPEG-2000 codestream

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 File Format Syntax

JPE.jpe

Joint Photographic Experts Group JFIF format

JPEG.jpeg

Joint Photographic Experts Group JFIF format

JPG.jpg

Joint Photographic Experts Group JFIF format

JPM.jpm

JPEG-2000 File Format Syntax

JPS.jps

Joint Photographic Experts Group JPS format

JPT.jpt

JPEG-2000 File Format Syntax

JXL.jxl

JPEG XL image

MAP.map

Multi-resolution Seamless Image Database (MrSID)

MAT.mat

MATLAB level 5 image format

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Common 2-dimensional bitmap format

PBM.pbm

Portable bitmap format (black and white)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer Format

PDF.pdf

Portable Document Format

PDFA.pdfa

Portable Document Archive Format

PFM.pfm

Portable float format

PGM.pgm

Portable graymap format (gray scale)

PGX.pgx

JPEG 2000 uncompressed format

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF format

PNG.png

Portable Network Graphics

PNG00.png00

PNG inheriting bit-depth, color-type from original image

PNG24.png24

Opaque or binary transparent 24-bit RGB (zlib 1.2.11)

PNG32.png32

Opaque or binary transparent 32-bit RGBA

PNG48.png48

Opaque or binary transparent 48-bit RGB

PNG64.png64

Opaque or binary transparent 64-bit RGBA

PNG8.png8

Opaque or binary transparent 8-bit indexed

PNM.pnm

Portable anymap

PPM.ppm

Portable pixmap format (color)

PS.ps

Adobe PostScript file

PSB.psb

Adobe Large Document Format

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

Raw red, green, and blue samples

RGBA.rgba

Raw red, green, blue, and alpha samples

RGBO.rgbo

Raw red, green, blue, and opacity samples

SIX.six

DEC SIXEL Graphics Format

SUN.sun

Sun Rasterfile

SVG.svg

Scalable Vector Graphics

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision Targa image

VIPS.vips

VIPS image

WBMP.wbmp

Wireless Bitmap (level 0) image

WEBP.webp

WebP Image Format

YUV.yuv

CCIR 601 4:1:1 or 4:2:2

Frequently asked questions

How does this work?

This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.

How long does it take to convert a file?

Conversions start instantly, and most files are converted in under a second. Larger files may take longer.

What happens to my files?

Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.

What file types can I convert?

We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.

How much does this cost?

This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.

Can I convert multiple files at once?

Yes! You can convert as many files as you want at once. Just select multiple files when you add them.