View EXIF metadata for any WBMP

Unlimited images. Filesizes up to 2.5GB. For free, forever.

All local

Our converter runs in your browser, so we never see your data.

Blazing fast

No uploading your files to a server—conversions start instantly.

Secure by default

Unlike other converters, your files are never uploaded to us.

EXIF, or Exchangeable Image File Format, is a standard that specifies the formats for images, sound, and ancillary tags used by digital cameras (including smartphones), scanners and other systems handling image and sound files recorded by digital cameras. This format allows metadata to be saved within the image file itself, and this metadata can include a variety of information about the photo, including the date and time it was taken, the camera settings used, and GPS information.

The EXIF standard encompasses a wide range of metadata, including technical data about the camera such as the model, the aperture, shutter speed, and focal length. This information can be incredibly useful for photographers who want to review the shooting conditions of specific photos. EXIF data also includes more detailed tags for things like whether the flash was used, the exposure mode, metering mode, white balance settings, and even lens information.

EXIF metadata also includes information about the image itself such as the resolution, orientation and whether the image has been modified. Some cameras and smartphones also have the ability to include GPS (Global Positioning System) information in the EXIF data, recording the exact location where the photo was taken, which can be useful for categorizing and cataloguing images.

However, it is important to note that EXIF data can pose privacy risks, because it can reveal more information than intended to third parties. For example, publishing a photo with GPS location data intact could inadvertently reveal one's home address or other sensitive locations. Because of this, many social media platforms remove EXIF data from images when they are uploaded. Nevertheless, many photo editing and organizing software give users the option to view, edit, or remove EXIF data.

EXIF data serves as a comprehensive resource for photographers and digital content creators, providing a wealth of information about how a particular photo was taken. Whether it's used to learn from shooting conditions, to sort through large collections of images, or to provide accurate geotagging for field work, EXIF data proves extremely valuable. However, the potential privacy implications should be considered when sharing images with embedded EXIF data. As such, knowing how to manage this data is an important skill in the digital age.

Frequently Asked Questions

What is EXIF data?

EXIF, or Exchangeable Image File Format, data includes various metadata about a photo such as camera settings, date and time the photo was taken, and potentially even location, if GPS is enabled.

How can I view EXIF data?

Most image viewers and editors (such as Adobe Photoshop, Windows Photo Viewer, etc.) allow you to view EXIF data. You simply have to open the properties or info panel.

Can EXIF data be edited?

Yes, EXIF data can be edited using certain software programs like Adobe Photoshop, Lightroom, or easy-to-use online resources. You can adjust or delete specific EXIF metadata fields with these tools.

Is there any privacy risk associated with EXIF data?

Yes. If GPS is enabled, location data embedded in the EXIF metadata could reveal sensitive geographical information about where the photo was taken. It's thus advised to remove or obfuscate this data when sharing photos.

How can I remove EXIF data?

Many software programs allow you to remove EXIF data. This process is often known as 'stripping' EXIF data. There exist several online tools that offer this functionality as well.

Do social media sites keep the EXIF data?

Most social media platforms like Facebook, Instagram, and Twitter automatically strip EXIF data from images to maintain user privacy.

What types of information does EXIF data provide?

EXIF data can include camera model, date and time of capture, focal length, exposure time, aperture, ISO setting, white balance setting, and GPS location, among other details.

Why is EXIF data useful for photographers?

For photographers, EXIF data can help understand exact settings used for a particular photograph. This information can help in improving techniques or replicating similar conditions in future shots.

Can all images contain EXIF data?

No, only images taken on devices that support EXIF metadata, like digital cameras and smartphones, will contain EXIF data.

Is there a standard format for EXIF data?

Yes, EXIF data follows a standard set by the Japan Electronic Industries Development Association (JEIDA). However, specific manufacturers may include additional proprietary information.

What is the WBMP format?

Wireless Bitmap (level 0) image

The WBMP (Wireless Bitmap) image format is a monochrome graphics file format optimized for mobile computing devices with limited graphical and computational capabilities, such as early mobile phones and PDAs (Personal Digital Assistants). Introduced in the late 1990s, it was designed to provide an efficient means of transmitting graphical information over wireless networks, which, at the time, were significantly slower and less reliable than today's mobile internet connections. WBMP is part of the WAP (Wireless Application Protocol), a suite of protocols allowing mobile devices to access web content.

A WBMP image consists entirely of black and white pixels, with no support for grayscale or color. This stark limitation was a practical decision, reflecting the limited display capabilities of early mobile devices and the necessity of conserving bandwidth. Each pixel in a WBMP image can only be in one of two states: black or white. This binary nature simplifies the image data structure, making it more compact and easier to process on devices with limited resources.

The WBMP format follows a relatively simple structure, making it easy to parse and render on a wide array of devices. A WBMP file begins with a type field, indicating the type of image encoded. For standard WBMP files, this type field is set to 0, specifying a basic monochrome image. Following the type field, two multi-byte integer fields specify the width and height of the image, respectively. These are encoded using a variable-length format, which conservatively uses bandwidth by only consuming as many bytes as necessary to represent the dimensions.

After the header section, the body of a WBMP file contains the pixel data. Each pixel is represented by a single bit: 0 for white and 1 for black. Because of this, eight pixels can be packed into a single byte, making WBMP files exceptionally compact, especially when compared to more common formats like JPEG or PNG. This efficiency was crucial for devices and networks of the mobile era the WBMP was designed for, which often had strict limitations on data storage and transmission speeds.

One of the key strengths of the WBMP format is its simplicity. The format's minimalistic approach makes it highly efficient for the kinds of basic, icon-like images it was typically used to convey, such as logos, simple graphics, and stylized text. This efficiency extends to the processing required to display the images. Since the files are small and the format straightforward, decoding and rendering can be done quickly, even on hardware with very limited computational power. This made WBMP an ideal choice for the earliest generations of mobile devices, which often struggled with more complex or data-heavy image formats.

Despite its advantages for use in constrained environments, the WBMP format has significant limitations. The most obvious is its restriction to monochrome imagery, which inherently limits the scope of graphical content that can be effectively represented. As mobile device displays evolved to support full-color images and users' expectations for richer media content grew, the need for more versatile image formats became apparent. Additionally, the binary nature of WBMP images means that they lack the nuance and detail possible with grayscale or color images, making them unsuitable for more detailed graphics or photographs.

With the advancement of mobile technology and network infrastructure, the relevance of the WBMP format has declined. Modern smartphones boast powerful processors and high-resolution, color displays, far removed from the devices that the WBMP format was originally designed for. Similarly, today's mobile networks offer significantly higher data transmission speeds, making the transmission of more complex and data-heavy image formats like JPEG or PNG feasible, even for real-time web content. Consequently, the use of WBMP has largely been phased out in favor of these more capable formats.

Furthermore, the development of web standards and protocols has also contributed to the obsolescence of WBMP. The proliferation of HTML5 and CSS3 allows for much more sophisticated web content to be delivered to mobile devices, including vector graphics and images in formats with higher quality and color fidelity than WBMP could offer. With these technologies, web developers can create richly detailed, interactive content that adapts to a wide range of devices and screen sizes, further diminishing the practicality of using a format as limited as WBMP.

Despite its obsolescence, understanding the WBMP format offers valuable insights into the evolution of mobile computing and the ways in which technology constraints shape software and protocol design. The WBMP format is a prime example of how designers and engineers worked within the limitations of their time to create functional solutions. Its simplicity and efficiency reflect a period when bandwidth, processing power, and storage were at a premium, requiring innovative approaches to data compression and optimization.

In conclusion, the WBMP image format played a crucial role during a formative period in the development of mobile computing, offering a practical solution for transmitting and displaying simple graphical content on early mobile devices. Though it has largely been replaced by more versatile and capable image formats, it remains an important part of the history of mobile technology. It serves as a reminder of the constant evolution of technology, adapting to changing capabilities and user needs, and illustrates the importance of design considerations in developing protocols and formats that are both efficient and adaptable.

Supported formats

AAI.aai

AAI Dune image

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Image File Format

AVS.avs

AVS X image

BAYER.bayer

Raw Bayer Image

BMP.bmp

Microsoft Windows bitmap image

CIN.cin

Cineon Image File

CLIP.clip

Image Clip Mask

CMYK.cmyk

Raw cyan, magenta, yellow, and black samples

CMYKA.cmyka

Raw cyan, magenta, yellow, black, and alpha samples

CUR.cur

Microsoft icon

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) image

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Encapsulated Portable Document Format

EPI.epi

Adobe Encapsulated PostScript Interchange format

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange format

EPT.ept

Encapsulated PostScript with TIFF preview

EPT2.ept2

Encapsulated PostScript Level II with TIFF preview

EXR.exr

High dynamic-range (HDR) image

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Flexible Image Transport System

GIF.gif

CompuServe graphics interchange format

GIF87.gif87

CompuServe graphics interchange format (version 87a)

GROUP4.group4

Raw CCITT Group4

HDR.hdr

High Dynamic Range image

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Microsoft icon

ICON.icon

Microsoft icon

IPL.ipl

IP2 Location Image

J2C.j2c

JPEG-2000 codestream

J2K.j2k

JPEG-2000 codestream

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 File Format Syntax

JPC.jpc

JPEG-2000 codestream

JPE.jpe

Joint Photographic Experts Group JFIF format

JPEG.jpeg

Joint Photographic Experts Group JFIF format

JPG.jpg

Joint Photographic Experts Group JFIF format

JPM.jpm

JPEG-2000 File Format Syntax

JPS.jps

Joint Photographic Experts Group JPS format

JPT.jpt

JPEG-2000 File Format Syntax

JXL.jxl

JPEG XL image

MAP.map

Multi-resolution Seamless Image Database (MrSID)

MAT.mat

MATLAB level 5 image format

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Common 2-dimensional bitmap format

PBM.pbm

Portable bitmap format (black and white)

PCD.pcd

Photo CD

PCDS.pcds

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer Format

PDF.pdf

Portable Document Format

PDFA.pdfa

Portable Document Archive Format

PFM.pfm

Portable float format

PGM.pgm

Portable graymap format (gray scale)

PGX.pgx

JPEG 2000 uncompressed format

PICON.picon

Personal Icon

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF format

PNG.png

Portable Network Graphics

PNG00.png00

PNG inheriting bit-depth, color-type from original image

PNG24.png24

Opaque or binary transparent 24-bit RGB (zlib 1.2.11)

PNG32.png32

Opaque or binary transparent 32-bit RGBA

PNG48.png48

Opaque or binary transparent 48-bit RGB

PNG64.png64

Opaque or binary transparent 64-bit RGBA

PNG8.png8

Opaque or binary transparent 8-bit indexed

PNM.pnm

Portable anymap

PPM.ppm

Portable pixmap format (color)

PS.ps

Adobe PostScript file

PSB.psb

Adobe Large Document Format

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

Raw red, green, and blue samples

RGBA.rgba

Raw red, green, blue, and alpha samples

RGBO.rgbo

Raw red, green, blue, and opacity samples

SIX.six

DEC SIXEL Graphics Format

SUN.sun

Sun Rasterfile

SVG.svg

Scalable Vector Graphics

SVGZ.svgz

Compressed Scalable Vector Graphics

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision Targa image

VIPS.vips

VIPS image

WBMP.wbmp

Wireless Bitmap (level 0) image

WEBP.webp

WebP Image Format

YUV.yuv

CCIR 601 4:1:1 or 4:2:2

Frequently asked questions

How does this work?

This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.

How long does it take to convert a file?

Conversions start instantly, and most files are converted in under a second. Larger files may take longer.

What happens to my files?

Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.

What file types can I convert?

We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.

How much does this cost?

This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.

Can I convert multiple files at once?

Yes! You can convert as many files as you want at once. Just select multiple files when you add them.