OCR PDB apa pun

Tidak terbatas pekerjaan. Ukuran file hingga 2.5GB. Gratis, selamanya.

Semua lokal

Konverter kami berjalan di browser Anda, jadi kami tidak pernah melihat data Anda.

Sangat cepat

Tidak perlu mengunggah file Anda ke server—konversi dimulai seketika.

Aman secara default

Berbeda dengan konverter lain, file Anda tidak pernah diunggah ke kami.

Pengenalan Karakter Optik (OCR) mengubah gambar teks—pindaian, foto ponsel cerdas, PDF—menjadi string yang dapat dibaca mesin dan, semakin, data terstruktur. OCR modern adalah alur kerja yang membersihkan gambar, menemukan teks, membacanya, dan mengekspor metadata yang kaya sehingga sistem hilir dapat mencari, mengindeks, atau mengekstrak bidang. Dua standar output yang banyak digunakan adalah hOCR, sebuah format mikro HTML untuk teks dan tata letak, dan ALTO XML, sebuah skema berorientasi perpustakaan/arsip; keduanya mempertahankan posisi, urutan baca, dan isyarat tata letak lainnya dan didukung oleh mesin populer seperti Tesseract.

Tur singkat alur kerja

Pra-pemrosesan. Kualitas OCR dimulai dengan pembersihan gambar: konversi skala abu-abu, penghilangan noise, thresholding (binerisasi), dan deskewing. Tutorial OpenCV kanonik mencakup global, adaptif dan Otsu thresholding—pokok untuk dokumen dengan pencahayaan tidak seragam atau histogram bimodal. Ketika iluminasi bervariasi dalam satu halaman (pikirkan jepretan telepon), metode adaptif seringkali mengungguli ambang batas global tunggal; Otsu secara otomatis memilih ambang batas dengan menganalisis histogram. Koreksi kemiringan sama pentingnya: deskewing berbasis Hough (Transformasi Garis Hough) yang dipasangkan dengan binerisasi Otsu adalah resep umum dan efektif dalam alur kerja pra-pemrosesan produksi.

Deteksi vs. pengenalan. OCR biasanya dibagi menjadi deteksi teks (di mana teksnya ?) dan pengenalan teks (apa isinya?). Dalam pemandangan alam dan banyak pindaian, detektor konvolusional sepenuhnya seperti EAST secara efisien memprediksi kuadrilateral tingkat kata atau baris tanpa tahap proposal yang berat dan diimplementasikan dalam toolkit umum (misalnya, tutorial deteksi teks OpenCV). Pada halaman yang kompleks (koran, formulir, buku), segmentasi baris/wilayah dan inferensi urutan baca penting:Kraken mengimplementasikan segmentasi zona/garis tradisional dan segmentasi baseline saraf, dengan dukungan eksplisit untuk berbagai skrip dan arah (LTR/RTL/vertikal).

Model pengenalan. Kuda beban open-source klasik Tesseract (sumber terbuka oleh Google, dengan akar di HP) berevolusi dari pengklasifikasi karakter menjadi pengenal urutan berbasis LSTM dan dapat menghasilkan PDF yang dapat dicari, output ramah hOCR/ALTO, dan lainnya dari CLI. Pengenal modern mengandalkan pemodelan urutan tanpa karakter yang telah disegmentasi sebelumnya. Klasifikasi Temporal Connectionist (CTC) tetap menjadi dasar, mempelajari penyelarasan antara urutan fitur input dan string label output; ini banyak digunakan dalam alur kerja tulisan tangan dan teks pemandangan.

Dalam beberapa tahun terakhir, Transformer telah membentuk kembali OCR. TrOCR menggunakan encoder Vision Transformer plus decoder Text Transformer, dilatih pada korpora sintetis besar kemudian disesuaikan dengan data nyata, dengan kinerja yang kuat di seluruh tolok ukur cetak, tulisan tangan, dan teks pemandangan (lihat juga Dokumentasi Hugging Face). Secara paralel, beberapa sistem menghindari OCR untuk pemahaman hilir: Donut (Document Understanding Transformer) adalah encoder-decoder bebas OCR yang secara langsung menghasilkan jawaban terstruktur (seperti JSON kunci-nilai) dari dokumen gambar (repo, kartu model), menghindari akumulasi kesalahan saat langkah OCR terpisah memberi makan sistem IE.

Mesin dan perpustakaan

Jika Anda ingin membaca teks yang disertakan dengan baterai di banyak skrip, EasyOCR menawarkan API sederhana dengan 80+ model bahasa, mengembalikan kotak, teks, dan kepercayaan—berguna untuk prototipe dan skrip non-Latin. Untuk dokumen bersejarah, Kraken bersinar dengan segmentasi baseline dan urutan baca yang sadar skrip; untuk pelatihan tingkat baris yang fleksibel, Calamari membangun di atas garis keturunan Ocropy (Ocropy) dengan pengenal (multi-)LSTM+CTC dan CLI untuk menyempurnakan model kustom.

Dataset dan tolok ukur

Generalisasi bergantung pada data. Untuk tulisan tangan, Database Tulisan Tangan IAM menyediakan kalimat bahasa Inggris yang beragam penulis untuk pelatihan dan evaluasi; ini adalah set referensi yang sudah lama ada untuk pengenalan baris dan kata. Untuk teks pemandangan, COCO-Text melapisi anotasi ekstensif di atas MS-COCO, dengan label untuk cetak/tulisan tangan, terbaca/tidak terbaca, skrip, dan transkripsi penuh (lihat juga halaman proyek asli). Bidang ini juga sangat bergantung pada pra-pelatihan sintetis: SynthText in the Wild merender teks ke dalam foto dengan geometri dan pencahayaan yang realistis, menyediakan volume data yang sangat besar untuk pra-pelatihan detektor dan pengenal (referensi kode & data).

Kompetisi di bawah payung Robust Reading ICDAR menjaga evaluasi tetap membumi. Tugas-tugas terbaru menekankan deteksi/pembacaan ujung-ke-ujung dan mencakup menghubungkan kata-kata menjadi frasa, dengan pelaporan kode resmi presisi/perolehan kembali/F-score, persimpangan-atas-gabungan (IoU), dan metrik jarak edit tingkat karakter—mencerminkan apa yang harus dilacak oleh para praktisi.

Format output dan penggunaan hilir

OCR jarang berakhir pada teks biasa. Arsip dan perpustakaan digital lebih suka ALTO XML karena mengkodekan tata letak fisik (blok/baris/kata dengan koordinat) di samping konten, dan itu berpasangan dengan baik dengan kemasan METS. hOCR mikroformat, sebaliknya, menyematkan ide yang sama ke dalam HTML/CSS menggunakan kelas seperti ocr_line dan ocrx_word, membuatnya mudah untuk ditampilkan, diedit, dan diubah dengan perkakas web. Tesseract mengekspos keduanya—misalnya, menghasilkan hOCR atau PDF yang dapat dicari langsung dari CLI (panduan output PDF); Pembungkus Python seperti pytesseract menambahkan kenyamanan. Konverter ada untuk menerjemahkan antara hOCR dan ALTO ketika repositori memiliki standar penyerapan tetap —lihat daftar yang dikurasi ini dari alat format file OCR.

Panduan praktis

  • Mulai dengan data & kebersihan. Jika gambar Anda adalah foto telepon atau pindaian berkualitas campuran, berinvestasi dalam thresholding (adaptif & Otsu) dan deskew (Hough) sebelum penyetelan model apa pun. Anda akan sering mendapatkan lebih banyak dari resep pra-pemrosesan yang kuat daripada dari menukar pengenal.
  • Pilih detektor yang tepat. Untuk halaman yang dipindai dengan kolom biasa, segmenter halaman (zona → baris) mungkin cukup; untuk gambar alami, detektor sekali tembak seperti EAST adalah baseline yang kuat dan dicolokkan ke banyak toolkit (Contoh OpenCV).
  • Pilih pengenal yang cocok dengan teks Anda. Untuk bahasa Latin cetak, Tesseract (LSTM/OEM) kokoh dan cepat; untuk multi-skrip atau prototipe cepat, EasyOCR produktif; untuk tulisan tangan atau jenis huruf historis, pertimbangkan Kraken atau Calamari dan rencanakan untuk menyempurnakan. Jika Anda memerlukan kopling yang erat untuk pemahaman dokumen (ekstraksi kunci-nilai, VQA), evaluasi TrOCR (OCR) versus Donut (bebas OCR) pada skema Anda—Donut dapat menghapus seluruh langkah integrasi.
  • Ukur apa yang penting. Untuk sistem ujung-ke-ujung, laporkan deteksi F-score dan pengenalan CER/WER (keduanya berdasarkan jarak edit Levenshtein ; lihat CTC); untuk tugas-tugas berat tata letak, lacak IoU/ketatnya dan jarak edit yang dinormalisasi tingkat karakter seperti di kit evaluasi ICDAR RRC .
  • Ekspor output yang kaya. Lebih suka hOCR /ALTO (atau keduanya) sehingga Anda menyimpan koordinat dan urutan baca—penting untuk penyorotan hasil pencarian, ekstraksi tabel/bidang , dan asal-usul. CLI Tesseract dan pytesseract menjadikannya satu baris.

Melihat ke depan

Tren terkuat adalah konvergensi: deteksi, pengenalan, pemodelan bahasa, dan bahkan decoding khusus tugas sedang bergabung menjadi tumpukan Transformer terpadu. Pra-pelatihan pada korpora sintetis besar tetap menjadi pengganda kekuatan. Model bebas OCR akan bersaing secara agresif di mana pun targetnya adalah output terstruktur daripada transkrip verbatim. Harapkan juga penerapan hibrida: detektor ringan plus pengenal gaya TrOCR untuk teks bentuk panjang, dan model gaya Donat untuk formulir dan tanda terima.

Bacaan lebih lanjut & alat

Tesseract (GitHub) · Dokumentasi Tesseract · Spesifikasi hOCR · Latar belakang ALTO · Detektor EAST · Deteksi Teks OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Tulisan Tangan IAM · Alat format file OCR · EasyOCR

Pertanyaan yang Sering Diajukan

Apa itu OCR?

Optical Character Recognition (OCR) adalah teknologi yang digunakan untuk mengubah berbagai jenis dokumen, seperti dokumen kertas yang telah dipindai, file PDF, atau gambar yang ditangkap oleh kamera digital, menjadi data yang dapat diedit dan dicari.

Bagaimana OCR bekerja?

OCR bekerja dengan memindai gambar atau dokumen input, membagi gambar menjadi karakter individu, dan membandingkan setiap karakter dengan database bentuk karakter menggunakan pengenalan pola atau pengenalan fitur.

Apa beberapa aplikasi praktis dari OCR?

OCR digunakan dalam berbagai sektor dan aplikasi, termasuk mendigitalkan dokumen yang dicetak, mengaktifkan layanan teks-ke-suara, mengotomatisasi proses entri data, dan membantu pengguna dengan gangguan penglihatan untuk berinteraksi lebih baik dengan teks.

Apakah OCR selalu 100% akurat?

Meskipun telah ada kemajuan besar dalam teknologi OCR, tetapi itu tidak sempurna. Akurasi dapat bervariasi tergantung pada kualitas dokumen asli dan spesifik dari software OCR yang digunakan.

Bisakah OCR mengenali tulisan tangan?

Meskipun OCR sebagian besar dirancang untuk teks cetak, beberapa sistem OCR lanjutan juga mampu mengenali tulisan tangan yang jelas dan konsisten. Namun, biasanya pengenalan tulisan tangan kurang akurat karena variasi besar dalam gaya tulisan individu.

Bisakah OCR menangani beberapa bahasa?

Ya, banyak sistem software OCR dapat mengenali beberapa bahasa. Namun, penting untuk memastikan bahwa bahasa spesifik tersebut didukung oleh software yang Anda gunakan.

Apa perbedaan antara OCR dan ICR?

OCR berarti Optical Character Recognition dan digunakan untuk mengenali teks cetak, sedangkan ICR, atau Intelligent Character Recognition, lebih canggih dan digunakan untuk mengenali teks tulisan tangan.

Apakah OCR bekerja dengan font dan ukuran teks apa pun?

OCR bekerja terbaik dengan font yang jelas, mudah dibaca dan ukuran teks standar. Meski bisa bekerja dengan berbagai font dan ukuran, akurasi cenderung menurun ketika berhadapan dengan font yang tidak biasa atau ukuran teks sangat kecil.

Apa saja keterbatasan teknologi OCR?

OCR bisa kesulitan dengan dokumen beresolusi rendah, font yang rumit, teks yang dicetak buruk, tulisan tangan, dan dokumen dengan latar belakang yang mengganggu teks. Juga, meskipun dapat bekerja dengan banyak bahasa, mungkin tidak mencakup setiap bahasa secara sempurna.

Bisakah OCR memindai teks berwarna atau latar belakang berwarna?

Ya, OCR dapat memindai teks berwarna dan latar belakang berwarna, meskipun umumnya lebih efektif dengan kombinasi warna kontras tinggi, seperti teks hitam pada latar belakang putih. Akurasi mungkin berkurang ketika warna teks dan latar belakang tidak memiliki kontras yang cukup.

Apa itu format PDB?

Format ImageViewer Database Palm

Format gambar PDB (Protein Data Bank) bukanlah format 'gambar' tradisional seperti JPEG atau PNG, melainkan format data yang menyimpan informasi struktural tiga dimensi tentang protein, asam nukleat, dan rakitan kompleks. Format PDB adalah landasan bioinformatika dan biologi struktural, karena memungkinkan para ilmuwan untuk memvisualisasikan, berbagi, dan menganalisis struktur molekul makromolekul biologis. Arsip PDB dikelola oleh Worldwide Protein Data Bank (wwPDB), yang memastikan bahwa data PDB tersedia secara bebas dan publik bagi komunitas global.

Format PDB pertama kali dikembangkan pada awal tahun 1970-an untuk memenuhi kebutuhan yang semakin besar akan metode standar dalam merepresentasikan struktur molekul. Sejak saat itu, format ini telah berkembang untuk mengakomodasi berbagai data molekul. Format ini berbasis teks dan dapat dibaca oleh manusia serta diproses oleh komputer. Format ini terdiri dari serangkaian catatan, yang masing-masing dimulai dengan pengenal baris enam karakter yang menentukan jenis informasi yang terkandung dalam catatan tersebut. Catatan tersebut memberikan deskripsi rinci tentang struktur, termasuk koordinat atom, konektivitas, dan data eksperimental.

File PDB biasanya dimulai dengan bagian header, yang mencakup metadata tentang struktur protein atau asam nukleat. Bagian ini berisi catatan seperti TITLE, yang memberikan deskripsi singkat tentang struktur; COMPND, yang mencantumkan komponen kimia; dan SOURCE, yang menjelaskan asal molekul biologis. Header juga mencakup catatan AUTHOR, yang mencantumkan nama orang-orang yang menentukan struktur, dan catatan JOURNAL, yang memberikan kutipan ke literatur tempat struktur pertama kali dijelaskan.

Setelah header, file PDB berisi informasi urutan primer makromolekul dalam catatan SEQRES. Catatan ini mencantumkan urutan residu (asam amino untuk protein, nukleotida untuk asam nukleat) sebagaimana yang muncul dalam rantai. Informasi ini sangat penting untuk memahami hubungan antara urutan molekul dan struktur tiga dimensinya.

Catatan ATOM bisa dibilang merupakan bagian terpenting dari file PDB, karena berisi koordinat untuk setiap atom dalam molekul. Setiap catatan ATOM mencakup nomor seri atom, nama atom, nama residu, pengenal rantai, nomor urutan residu, dan koordinat Kartesius x, y, dan z atom dalam angstrom. Catatan ATOM memungkinkan rekonstruksi struktur tiga dimensi molekul, yang dapat divisualisasikan menggunakan perangkat lunak khusus seperti PyMOL, Chimera, atau VMD.

Selain catatan ATOM, terdapat catatan HETATM untuk atom yang merupakan bagian dari residu atau ligan non-standar, seperti ion logam, molekul air, atau molekul kecil lainnya yang terikat pada protein atau asam nukleat. Catatan ini diformat mirip dengan catatan ATOM tetapi dibedakan untuk memfasilitasi identifikasi komponen non-makromolekul dalam struktur.

Informasi konektivitas disediakan dalam catatan CONECT, yang mencantumkan ikatan antar atom. Catatan ini tidak wajib, karena sebagian besar perangkat lunak visualisasi dan analisis molekul dapat menyimpulkan konektivitas berdasarkan jarak antar atom. Namun, catatan ini sangat penting untuk mendefinisikan ikatan yang tidak biasa atau untuk struktur dengan kompleks koordinasi logam, di mana ikatan mungkin tidak terlihat jelas dari koordinat atom saja.

Format PDB juga mencakup catatan untuk menentukan elemen struktur sekunder, seperti heliks alfa dan lembaran beta. Catatan HELIX dan SHEET mengidentifikasi struktur ini dan memberikan informasi tentang lokasinya dalam urutan. Informasi ini membantu dalam memahami pola lipatan makromolekul dan sangat penting untuk studi komparatif dan pemodelan.

Data eksperimental dan metode yang digunakan untuk menentukan struktur juga didokumentasikan dalam file PDB. Catatan seperti EXPDTA menjelaskan teknik eksperimental (misalnya, kristalografi sinar-X, spektroskopi NMR), sementara catatan REMARK dapat berisi berbagai komentar dan anotasi tentang struktur, termasuk detail tentang pengumpulan data, resolusi, dan statistik penyempurnaan.

Catatan END menandakan akhir dari file PDB. Penting untuk dicatat bahwa meskipun format PDB banyak digunakan, format ini memiliki beberapa keterbatasan karena usianya dan format lebar kolom tetap, yang dapat menyebabkan masalah dengan struktur modern yang memiliki banyak atom atau memerlukan presisi yang lebih tinggi. Untuk mengatasi keterbatasan ini, format yang diperbarui yang disebut mmCIF (File Informasi Kristalografi Makromolekul) telah dikembangkan, yang menawarkan kerangka kerja yang lebih fleksibel dan dapat diperluas untuk merepresentasikan struktur makromolekul.

Terlepas dari pengembangan format mmCIF, format PDB tetap populer karena kesederhanaannya dan banyaknya perangkat lunak yang mendukungnya. Para peneliti sering mengonversi antara format PDB dan mmCIF tergantung pada kebutuhan mereka dan alat yang mereka gunakan. Umur panjang format PDB merupakan bukti peran fundamentalnya dalam bidang biologi struktural dan keefektifannya dalam menyampaikan informasi struktural yang kompleks dengan cara yang relatif mudah.

Untuk bekerja dengan file PDB, para ilmuwan menggunakan berbagai alat komputasi. Perangkat lunak visualisasi molekul memungkinkan pengguna untuk memuat file PDB dan melihat struktur dalam tiga dimensi, memutarnya, memperbesar dan memperkecil, dan menerapkan gaya rendering yang berbeda untuk lebih memahami susunan spasial atom. Alat-alat ini sering kali menyediakan fungsionalitas tambahan, seperti mengukur jarak, sudut, dan dihedral, mensimulasikan dinamika molekul, dan menganalisis interaksi dalam struktur atau dengan ligan potensial.

Format PDB juga memainkan peran penting dalam biologi komputasi dan penemuan obat. Informasi struktural dari file PDB digunakan dalam pemodelan homologi, di mana struktur yang diketahui dari protein terkait digunakan untuk memprediksi struktur protein yang diminati. Dalam desain obat berbasis struktur, file PDB dari protein target digunakan untuk menyaring dan mengoptimalkan senyawa obat potensial, yang kemudian dapat disintesis dan diuji di laboratorium.

Dampak format PDB melampaui proyek penelitian individu. Protein Data Bank sendiri adalah repositori yang saat ini berisi lebih dari 150.000 struktur, dan terus bertambah seiring dengan ditentukan dan disimpannya struktur baru. Basis data ini merupakan sumber yang sangat berharga untuk pendidikan, memungkinkan siswa untuk mengeksplorasi dan mempelajari struktur makromolekul biologis. Ini juga berfungsi sebagai catatan sejarah kemajuan dalam biologi struktural selama beberapa dekade terakhir.

Sebagai kesimpulan, format gambar PDB adalah alat penting dalam bidang biologi struktural, yang menyediakan sarana untuk menyimpan, berbagi, dan menganalisis struktur tiga dimensi makromolekul biologis. Meskipun memiliki beberapa keterbatasan, adopsi yang luas dan pengembangan ekosistem alat yang kaya untuk penggunaannya memastikan bahwa format ini akan tetap menjadi format utama di masa mendatang. Seiring dengan terus berkembangnya bidang biologi struktural, format PDB kemungkinan akan dilengkapi dengan format yang lebih canggih seperti mmCIF, tetapi warisannya akan tetap bertahan sebagai fondasi tempat biologi struktural modern dibangun.

Format yang didukung

AAI.aai

Gambar AAI Dune

AI.ai

Adobe Illustrator CS2

AVIF.avif

Format File Gambar AV1

AVS.avs

Gambar AVS X

BAYER.bayer

Gambar Bayer Mentah

BMP.bmp

Gambar bitmap Windows Microsoft

CIN.cin

File Gambar Cineon

CLIP.clip

Masker Klip Gambar

CMYK.cmyk

Contoh cyan, magenta, kuning, dan hitam mentah

CMYKA.cmyka

Contoh cyan, magenta, kuning, hitam, dan alpha mentah

CUR.cur

Ikon Microsoft

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

Gambar SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Format Dokumen Portabel Terkapsulasi

EPI.epi

Format Interchange PostScript Terkapsulasi Adobe

EPS.eps

PostScript Terkapsulasi Adobe

EPSF.epsf

PostScript Terkapsulasi Adobe

EPSI.epsi

Format Interchange PostScript Terkapsulasi Adobe

EPT.ept

PostScript Terkapsulasi dengan pratinjau TIFF

EPT2.ept2

PostScript Level II Terkapsulasi dengan pratinjau TIFF

EXR.exr

Gambar berdynamik tinggi (HDR)

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Sistem Transportasi Gambar Fleksibel

GIF.gif

Format pertukaran grafis CompuServe

GIF87.gif87

Format pertukaran grafis CompuServe (versi 87a)

GROUP4.group4

CCITT Grup 4 Mentah

HDR.hdr

Gambar Berdynamik Tinggi

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Ikon Microsoft

ICON.icon

Ikon Microsoft

IPL.ipl

Gambar Lokasi IP2

J2C.j2c

Codestream JPEG-2000

J2K.j2k

Codestream JPEG-2000

JNG.jng

Grafik Jaringan JPEG

JP2.jp2

Sintaks Format File JPEG-2000

JPC.jpc

Codestream JPEG-2000

JPE.jpe

Format JFIF Grup Ahli Fotografi Bersama

JPEG.jpeg

Format JFIF Grup Ahli Fotografi Bersama

JPG.jpg

Format JFIF Grup Ahli Fotografi Bersama

JPM.jpm

Sintaks Format File JPEG-2000

JPS.jps

Format JPS Grup Ahli Fotografi Bersama

JPT.jpt

Sintaks Format File JPEG-2000

JXL.jxl

Gambar JPEG XL

MAP.map

Database Gambar Seamless Multi-resolusi (MrSID)

MAT.mat

Format gambar level 5 MATLAB

PAL.pal

Pixmap Palm

PALM.palm

Pixmap Palm

PAM.pam

Format bitmap 2-dimensi umum

PBM.pbm

Format bitmap portabel (hitam dan putih)

PCD.pcd

Photo CD

PCDS.pcds

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Format ImageViewer Database Palm

PDF.pdf

Format Dokumen Portabel

PDFA.pdfa

Format Arsip Dokumen Portabel

PFM.pfm

Format float portabel

PGM.pgm

Format graymap portabel (skala abu-abu)

PGX.pgx

Format tak terkompresi JPEG 2000

PICON.picon

Ikon Pribadi

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Format JFIF Kelompok Ahli Fotografi Bersama

PNG.png

Grafik Jaringan Portabel

PNG00.png00

PNG mewarisi bit-depth, tipe warna dari gambar asli

PNG24.png24

RGB 24-bit transparan atau biner (zlib 1.2.11)

PNG32.png32

RGBA 32-bit transparan atau biner

PNG48.png48

RGB 48-bit transparan atau biner

PNG64.png64

RGBA 64-bit transparan atau biner

PNG8.png8

Indeks 8-bit transparan atau biner

PNM.pnm

Anymap portabel

PPM.ppm

Format pixmap portabel (warna)

PS.ps

File Adobe PostScript

PSB.psb

Format Dokumen Besar Adobe

PSD.psd

Bitmap Adobe Photoshop

RGB.rgb

Contoh merah, hijau, dan biru mentah

RGBA.rgba

Contoh merah, hijau, biru, dan alpha mentah

RGBO.rgbo

Contoh merah, hijau, biru, dan opasitas mentah

SIX.six

Format Grafik DEC SIXEL

SUN.sun

Rasterfile Sun

SVG.svg

Grafik Vektor Skalable

SVGZ.svgz

Grafik Vektor Skalable Terkompresi

TIFF.tiff

Format File Gambar Bertag

VDA.vda

Gambar Truevision Targa

VIPS.vips

Gambar VIPS

WBMP.wbmp

Gambar Bitmap Nirkabel (level 0)

WEBP.webp

Format Gambar WebP

YUV.yuv

CCIR 601 4:1:1 atau 4:2:2

Pertanyaan yang sering diajukan

Bagaimana cara kerjanya?

Konverter ini berjalan sepenuhnya di browser Anda. Ketika Anda memilih sebuah file, file tersebut dibaca ke dalam memori dan dikonversi ke format yang dipilih. Anda kemudian dapat mengunduh file yang telah dikonversi.

Berapa lama waktu yang dibutuhkan untuk mengonversi file?

Konversi dimulai seketika, dan sebagian besar file dikonversi dalam waktu kurang dari satu detik. File yang lebih besar mungkin membutuhkan waktu lebih lama.

Apa yang terjadi dengan file saya?

File Anda tidak pernah diunggah ke server kami. File tersebut dikonversi di browser Anda, dan file yang telah dikonversi kemudian diunduh. Kami tidak pernah melihat file Anda.

Jenis file apa yang bisa saya konversi?

Kami mendukung konversi antara semua format gambar, termasuk JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, dan lainnya.

Berapa biaya yang harus saya bayar?

Konverter ini sepenuhnya gratis, dan akan selalu gratis. Karena berjalan di browser Anda, kami tidak perlu membayar untuk server, jadi kami tidak perlu mengenakan biaya kepada Anda.

Bisakah saya mengonversi beberapa file sekaligus?

Ya! Anda dapat mengonversi sebanyak mungkin file sekaligus. Cukup pilih beberapa file saat Anda menambahkannya.