Pengenalan Karakter Optik (OCR) mengubah gambar teks—pindaian, foto ponsel cerdas, PDF—menjadi string yang dapat dibaca mesin dan, semakin, data terstruktur. OCR modern adalah alur kerja yang membersihkan gambar, menemukan teks, membacanya, dan mengekspor metadata yang kaya sehingga sistem hilir dapat mencari, mengindeks, atau mengekstrak bidang. Dua standar output yang banyak digunakan adalah hOCR, sebuah format mikro HTML untuk teks dan tata letak, dan ALTO XML, sebuah skema berorientasi perpustakaan/arsip; keduanya mempertahankan posisi, urutan baca, dan isyarat tata letak lainnya dan didukung oleh mesin populer seperti Tesseract.
Pra-pemrosesan. Kualitas OCR dimulai dengan pembersihan gambar: konversi skala abu-abu, penghilangan noise, thresholding (binerisasi), dan deskewing. Tutorial OpenCV kanonik mencakup global, adaptif dan Otsu thresholding—pokok untuk dokumen dengan pencahayaan tidak seragam atau histogram bimodal. Ketika iluminasi bervariasi dalam satu halaman (pikirkan jepretan telepon), metode adaptif seringkali mengungguli ambang batas global tunggal; Otsu secara otomatis memilih ambang batas dengan menganalisis histogram. Koreksi kemiringan sama pentingnya: deskewing berbasis Hough (Transformasi Garis Hough) yang dipasangkan dengan binerisasi Otsu adalah resep umum dan efektif dalam alur kerja pra-pemrosesan produksi.
Deteksi vs. pengenalan. OCR biasanya dibagi menjadi deteksi teks (di mana teksnya ?) dan pengenalan teks (apa isinya?). Dalam pemandangan alam dan banyak pindaian, detektor konvolusional sepenuhnya seperti EAST secara efisien memprediksi kuadrilateral tingkat kata atau baris tanpa tahap proposal yang berat dan diimplementasikan dalam toolkit umum (misalnya, tutorial deteksi teks OpenCV). Pada halaman yang kompleks (koran, formulir, buku), segmentasi baris/wilayah dan inferensi urutan baca penting:Kraken mengimplementasikan segmentasi zona/garis tradisional dan segmentasi baseline saraf, dengan dukungan eksplisit untuk berbagai skrip dan arah (LTR/RTL/vertikal).
Model pengenalan. Kuda beban open-source klasik Tesseract (sumber terbuka oleh Google, dengan akar di HP) berevolusi dari pengklasifikasi karakter menjadi pengenal urutan berbasis LSTM dan dapat menghasilkan PDF yang dapat dicari, output ramah hOCR/ALTO, dan lainnya dari CLI. Pengenal modern mengandalkan pemodelan urutan tanpa karakter yang telah disegmentasi sebelumnya. Klasifikasi Temporal Connectionist (CTC) tetap menjadi dasar, mempelajari penyelarasan antara urutan fitur input dan string label output; ini banyak digunakan dalam alur kerja tulisan tangan dan teks pemandangan.
Dalam beberapa tahun terakhir, Transformer telah membentuk kembali OCR. TrOCR menggunakan encoder Vision Transformer plus decoder Text Transformer, dilatih pada korpora sintetis besar kemudian disesuaikan dengan data nyata, dengan kinerja yang kuat di seluruh tolok ukur cetak, tulisan tangan, dan teks pemandangan (lihat juga Dokumentasi Hugging Face). Secara paralel, beberapa sistem menghindari OCR untuk pemahaman hilir: Donut (Document Understanding Transformer) adalah encoder-decoder bebas OCR yang secara langsung menghasilkan jawaban terstruktur (seperti JSON kunci-nilai) dari dokumen gambar (repo, kartu model), menghindari akumulasi kesalahan saat langkah OCR terpisah memberi makan sistem IE.
Jika Anda ingin membaca teks yang disertakan dengan baterai di banyak skrip, EasyOCR menawarkan API sederhana dengan 80+ model bahasa, mengembalikan kotak, teks, dan kepercayaan—berguna untuk prototipe dan skrip non-Latin. Untuk dokumen bersejarah, Kraken bersinar dengan segmentasi baseline dan urutan baca yang sadar skrip; untuk pelatihan tingkat baris yang fleksibel, Calamari membangun di atas garis keturunan Ocropy (Ocropy) dengan pengenal (multi-)LSTM+CTC dan CLI untuk menyempurnakan model kustom.
Generalisasi bergantung pada data. Untuk tulisan tangan, Database Tulisan Tangan IAM menyediakan kalimat bahasa Inggris yang beragam penulis untuk pelatihan dan evaluasi; ini adalah set referensi yang sudah lama ada untuk pengenalan baris dan kata. Untuk teks pemandangan, COCO-Text melapisi anotasi ekstensif di atas MS-COCO, dengan label untuk cetak/tulisan tangan, terbaca/tidak terbaca, skrip, dan transkripsi penuh (lihat juga halaman proyek asli). Bidang ini juga sangat bergantung pada pra-pelatihan sintetis: SynthText in the Wild merender teks ke dalam foto dengan geometri dan pencahayaan yang realistis, menyediakan volume data yang sangat besar untuk pra-pelatihan detektor dan pengenal (referensi kode & data).
Kompetisi di bawah payung Robust Reading ICDAR menjaga evaluasi tetap membumi. Tugas-tugas terbaru menekankan deteksi/pembacaan ujung-ke-ujung dan mencakup menghubungkan kata-kata menjadi frasa, dengan pelaporan kode resmi presisi/perolehan kembali/F-score, persimpangan-atas-gabungan (IoU), dan metrik jarak edit tingkat karakter—mencerminkan apa yang harus dilacak oleh para praktisi.
OCR jarang berakhir pada teks biasa. Arsip dan perpustakaan digital lebih suka ALTO XML karena mengkodekan tata letak fisik (blok/baris/kata dengan koordinat) di samping konten, dan itu berpasangan dengan baik dengan kemasan METS. hOCR mikroformat, sebaliknya, menyematkan ide yang sama ke dalam HTML/CSS menggunakan kelas seperti ocr_line dan ocrx_word, membuatnya mudah untuk ditampilkan, diedit, dan diubah dengan perkakas web. Tesseract mengekspos keduanya—misalnya, menghasilkan hOCR atau PDF yang dapat dicari langsung dari CLI (panduan output PDF); Pembungkus Python seperti pytesseract menambahkan kenyamanan. Konverter ada untuk menerjemahkan antara hOCR dan ALTO ketika repositori memiliki standar penyerapan tetap —lihat daftar yang dikurasi ini dari alat format file OCR.
Tren terkuat adalah konvergensi: deteksi, pengenalan, pemodelan bahasa, dan bahkan decoding khusus tugas sedang bergabung menjadi tumpukan Transformer terpadu. Pra-pelatihan pada korpora sintetis besar tetap menjadi pengganda kekuatan. Model bebas OCR akan bersaing secara agresif di mana pun targetnya adalah output terstruktur daripada transkrip verbatim. Harapkan juga penerapan hibrida: detektor ringan plus pengenal gaya TrOCR untuk teks bentuk panjang, dan model gaya Donat untuk formulir dan tanda terima.
Tesseract (GitHub) · Dokumentasi Tesseract · Spesifikasi hOCR · Latar belakang ALTO · Detektor EAST · Deteksi Teks OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Tulisan Tangan IAM · Alat format file OCR · EasyOCR
Optical Character Recognition (OCR) adalah teknologi yang digunakan untuk mengubah berbagai jenis dokumen, seperti dokumen kertas yang telah dipindai, file PDF, atau gambar yang ditangkap oleh kamera digital, menjadi data yang dapat diedit dan dicari.
OCR bekerja dengan memindai gambar atau dokumen input, membagi gambar menjadi karakter individu, dan membandingkan setiap karakter dengan database bentuk karakter menggunakan pengenalan pola atau pengenalan fitur.
OCR digunakan dalam berbagai sektor dan aplikasi, termasuk mendigitalkan dokumen yang dicetak, mengaktifkan layanan teks-ke-suara, mengotomatisasi proses entri data, dan membantu pengguna dengan gangguan penglihatan untuk berinteraksi lebih baik dengan teks.
Meskipun telah ada kemajuan besar dalam teknologi OCR, tetapi itu tidak sempurna. Akurasi dapat bervariasi tergantung pada kualitas dokumen asli dan spesifik dari software OCR yang digunakan.
Meskipun OCR sebagian besar dirancang untuk teks cetak, beberapa sistem OCR lanjutan juga mampu mengenali tulisan tangan yang jelas dan konsisten. Namun, biasanya pengenalan tulisan tangan kurang akurat karena variasi besar dalam gaya tulisan individu.
Ya, banyak sistem software OCR dapat mengenali beberapa bahasa. Namun, penting untuk memastikan bahwa bahasa spesifik tersebut didukung oleh software yang Anda gunakan.
OCR berarti Optical Character Recognition dan digunakan untuk mengenali teks cetak, sedangkan ICR, atau Intelligent Character Recognition, lebih canggih dan digunakan untuk mengenali teks tulisan tangan.
OCR bekerja terbaik dengan font yang jelas, mudah dibaca dan ukuran teks standar. Meski bisa bekerja dengan berbagai font dan ukuran, akurasi cenderung menurun ketika berhadapan dengan font yang tidak biasa atau ukuran teks sangat kecil.
OCR bisa kesulitan dengan dokumen beresolusi rendah, font yang rumit, teks yang dicetak buruk, tulisan tangan, dan dokumen dengan latar belakang yang mengganggu teks. Juga, meskipun dapat bekerja dengan banyak bahasa, mungkin tidak mencakup setiap bahasa secara sempurna.
Ya, OCR dapat memindai teks berwarna dan latar belakang berwarna, meskipun umumnya lebih efektif dengan kombinasi warna kontras tinggi, seperti teks hitam pada latar belakang putih. Akurasi mungkin berkurang ketika warna teks dan latar belakang tidak memiliki kontras yang cukup.
JPEG, yang merupakan kepanjangan dari Joint Photographic Experts Group, adalah metode kompresi lossy yang umum digunakan untuk gambar digital, terutama untuk gambar yang dihasilkan oleh fotografi digital. Tingkat kompresi dapat disesuaikan, memungkinkan penyesuaian antara ukuran penyimpanan dan kualitas gambar. JPEG biasanya mencapai kompresi 10:1 dengan kehilangan kualitas gambar yang tidak terlihat secara nyata.
Algoritma kompresi JPEG berada di inti standar JPEG. Proses dimulai dengan gambar digital dikonversi dari ruang warna RGB khasnya menjadi ruang warna yang berbeda, yaitu YCbCr. Ruang warna YCbCr memisahkan gambar menjadi luminance (Y), yang mewakili tingkat kecerahan, dan chrominance (Cb dan Cr), yang mewakili informasi warna. Pemisahan ini menguntungkan karena mata manusia lebih sensitif terhadap variasi kecerahan daripada warna, memungkinkan kompresi untuk memanfaatkan hal ini dengan memperkecil informasi warna lebih dari luminance.
Setelah gambar berada dalam ruang warna YCbCr, langkah selanjutnya dalam proses kompresi JPEG adalah memperkecil (downsample) saluran chrominance. Downsampling mengurangi resolusi informasi chrominance, yang biasanya tidak mempengaruhi kualitas gambar yang dirasakan secara signifikan, karena mata manusia kurang sensitif terhadap detail warna. Langkah ini opsional dan dapat disesuaikan tergantung pada keseimbangan yang diinginkan antara kualitas gambar dan ukuran file.
Setelah downsampling, gambar dibagi menjadi blok-blok, biasanya berukuran 8x8 piksel. Setiap blok kemudian diproses secara terpisah. Langkah pertama dalam memproses setiap blok adalah menerapkan Discrete Cosine Transform (DCT). DCT adalah operasi matematika yang mengubah data domain spasial (nilai-nilai piksel) menjadi domain frekuensi. Hasilnya adalah matriks koefisien frekuensi yang mewakili data blok gambar dalam hal komponen frekuensi spasialnya.
Koefisien frekuensi yang dihasilkan dari DCT kemudian dikuantisasi. Kuantisasi adalah proses pemetaan set input yang besar menjadi set yang lebih kecil - dalam kasus JPEG, ini berarti mengurangi presisi koefisien frekuensi. Di sinilah bagian lossy dari kompresi terjadi, karena sebagian informasi gambar dibuang. Langkah kuantisasi dikendalikan oleh tabel kuantisasi, yang menentukan seberapa banyak kompresi yang diterapkan pada setiap komponen frekuensi. Tabel kuantisasi dapat disesuaikan untuk mementingkan kualitas gambar yang lebih tinggi (kompresi yang lebih rendah) atau ukuran file yang lebih kecil (kompresi yang lebih tinggi).
Setelah kuantisasi, koefisien disusun dalam urutan zig-zag, mulai dari sudut kiri atas dan mengikuti pola yang memprioritaskan komponen frekuensi yang lebih rendah daripada yang lebih tinggi. Hal ini karena komponen frekuensi yang lebih rendah (yang mewakili bagian gambar yang lebih seragam) lebih penting untuk penampilan keseluruhan daripada komponen frekuensi yang lebih tinggi (yang mewakili detail dan tepi yang lebih halus).
Langkah selanjutnya dalam proses kompresi JPEG adalah pengkodean entropi, yang merupakan metode kompresi lossless. Bentuk pengkodean entropi yang paling umum digunakan dalam JPEG adalah pengkodean Huffman, meskipun pengkodean aritmatika juga merupakan opsi. Pengkodean Huffman bekerja dengan menetapkan kode yang lebih pendek untuk kejadian yang lebih sering dan kode yang lebih panjang untuk kejadian yang jarang. Karena pengurutan zig-zag cenderung mengelompokkan koefisien frekuensi yang mirip bersama-sama, hal ini meningkatkan efisiensi pengkodean Huffman.
Setelah pengkodean entropi selesai, data yang terkompresi disimpan dalam format file yang sesuai dengan standar JPEG. Format file ini mencakup header yang berisi informasi tentang gambar, seperti dimensinya dan tabel kuantisasi yang digunakan, diikuti oleh data gambar yang dikodekan Huffman. Format file juga mendukung penyertaan metadata, seperti data EXIF, yang dapat berisi informasi tentang pengaturan kamera yang digunakan untuk mengambil foto, tanggal dan waktu diambil, serta detail lainnya yang relevan.
Saat gambar JPEG dibuka, proses dekompresi pada dasarnya membalik langkah-langkah kompresi. Data yang dikodekan Huffman didekodekan, koefisien frekuensi yang terkuantisasi di-de-kuantisasi menggunakan tabel kuantisasi yang sama yang digunakan selama kompresi, dan Transformasi Cosinus Diskret Terbalik (IDCT) diterapkan pada setiap blok untuk mengonversi data domain frekuensi kembali menjadi nilai-nilai piksel domain spasial.
Proses de-kuantisasi dan IDCT memperkenalkan beberapa kesalahan karena sifat lossy dari kompresi, yang menyebabkan JPEG tidak ideal untuk gambar yang akan mengalami banyak editan dan penyimpanan ulang. Setiap kali gambar JPEG disimpan, ia melalui proses kompresi lagi, dan informasi gambar tambahan akan hilang. Hal ini dapat menyebabkan penurunan kualitas gambar yang terlihat dari waktu ke waktu, yang dikenal sebagai 'generasi kerugian'.
Meskipun sifat lossy dari kompresi JPEG, format ini tetap populer karena fleksibilitas dan efisiensinya. Gambar JPEG dapat sangat kecil dalam ukuran file, yang membuatnya ideal untuk digunakan di web, di mana bandwidth dan waktu pemuatan menjadi pertimbangan penting. Selain itu, standar JPEG mencakup mode progresif, yang memungkinkan gambar dikodekan sedemikian rupa sehingga dapat didekodekan dalam beberapa lintasan, di mana setiap lintasan meningkatkan resolusi gambar. Hal ini terutama berguna untuk gambar web, karena memungkinkan versi berkualitas rendah dari gambar untuk ditampilkan dengan cepat, dengan kualitas yang meningkat saat lebih banyak data yang diunduh.
JPEG juga memiliki beberapa keterbatasan dan tidak selalu menjadi pilihan terbaik untuk semua jenis gambar. Misalnya, tidak cocok untuk gambar dengan tepi tajam atau teks kontras tinggi, karena kompresi dapat menciptakan artefak yang terlihat jelas di sekitar area-area ini. Selain itu, JPEG tidak mendukung transparansi, yang merupakan fitur yang disediakan oleh format lain seperti PNG dan GIF.
Untuk mengatasi beberapa keterbatasan dari standar JPEG asli, format baru telah dikembangkan, seperti JPEG 2000 dan JPEG XR. Format-format ini menawarkan efisiensi kompresi yang lebih baik, dukungan untuk kedalaman bit yang lebih tinggi, dan fitur tambahan seperti transparansi dan kompresi lossless. Namun, mereka belum mencapai tingkat adopsi yang sama luasnya seperti format JPEG asli.
Sebagai kesimpulan, format gambar JPEG adalah keseimbangan kompleks antara matematika, psikologi penglihatan manusia, dan ilmu komputer. Penggunaannya yang tersebar luas merupakan bukti dari keefektifannya dalam mengurangi ukuran file sambil mempertahankan tingkat kualitas gambar yang dapat diterima untuk sebagian besar aplikasi. Memahami aspek teknis JPEG dapat membantu pengguna membuat keputusan yang tepat tentang kapan menggunakan format ini dan bagaimana mengoptimalkan gambar mereka untuk keseimbangan kualitas dan ukuran file yang paling sesuai dengan kebutuhan mereka.
Konverter ini berjalan sepenuhnya di browser Anda. Ketika Anda memilih sebuah file, file tersebut dibaca ke dalam memori dan dikonversi ke format yang dipilih. Anda kemudian dapat mengunduh file yang telah dikonversi.
Konversi dimulai seketika, dan sebagian besar file dikonversi dalam waktu kurang dari satu detik. File yang lebih besar mungkin membutuhkan waktu lebih lama.
File Anda tidak pernah diunggah ke server kami. File tersebut dikonversi di browser Anda, dan file yang telah dikonversi kemudian diunduh. Kami tidak pernah melihat file Anda.
Kami mendukung konversi antara semua format gambar, termasuk JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, dan lainnya.
Konverter ini sepenuhnya gratis, dan akan selalu gratis. Karena berjalan di browser Anda, kami tidak perlu membayar untuk server, jadi kami tidak perlu mengenakan biaya kepada Anda.
Ya! Anda dapat mengonversi sebanyak mungkin file sekaligus. Cukup pilih beberapa file saat Anda menambahkannya.