OCR FF apa pun

Jatuhkan foto, pindaian, atau PDF (hingga 2.5GB). Kami mengekstrak teks langsung di browser Anda — gratis, tidak terbatas, dan file Anda tidak pernah meninggalkan perangkat Anda.

Pribadi dan aman

Semuanya terjadi di browser Anda. File Anda tidak pernah menyentuh server kami.

Sangat cepat

Tanpa mengunggah, tanpa menunggu. Konversi saat Anda meletakkan file.

Benar-benar gratis

Tidak perlu akun. Tidak ada biaya tersembunyi. Tidak ada trik ukuran file.

Pengenalan Karakter Optik (OCR) mengubah gambar teks—pindaian, foto ponsel cerdas, PDF—menjadi string yang dapat dibaca mesin dan, semakin, data terstruktur. OCR modern adalah alur kerja yang membersihkan gambar, menemukan teks, membacanya, dan mengekspor metadata yang kaya sehingga sistem hilir dapat mencari, mengindeks, atau mengekstrak bidang. Dua standar output yang banyak digunakan adalah hOCR, sebuah format mikro HTML untuk teks dan tata letak, dan ALTO XML, sebuah skema berorientasi perpustakaan/arsip; keduanya mempertahankan posisi, urutan baca, dan isyarat tata letak lainnya dan didukung oleh mesin populer seperti Tesseract.

Tur singkat alur kerja

Pra-pemrosesan. Kualitas OCR dimulai dengan pembersihan gambar: konversi skala abu-abu, penghilangan noise, thresholding (binerisasi), dan deskewing. Tutorial OpenCV kanonik mencakup global, adaptif dan Otsu thresholding—pokok untuk dokumen dengan pencahayaan tidak seragam atau histogram bimodal. Ketika iluminasi bervariasi dalam satu halaman (pikirkan jepretan telepon), metode adaptif seringkali mengungguli ambang batas global tunggal; Otsu secara otomatis memilih ambang batas dengan menganalisis histogram. Koreksi kemiringan sama pentingnya: deskewing berbasis Hough (Transformasi Garis Hough) yang dipasangkan dengan binerisasi Otsu adalah resep umum dan efektif dalam alur kerja pra-pemrosesan produksi.

Deteksi vs. pengenalan. OCR biasanya dibagi menjadi deteksi teks (di mana teksnya ?) dan pengenalan teks (apa isinya?). Dalam pemandangan alam dan banyak pindaian, detektor konvolusional sepenuhnya seperti EAST secara efisien memprediksi kuadrilateral tingkat kata atau baris tanpa tahap proposal yang berat dan diimplementasikan dalam toolkit umum (misalnya, tutorial deteksi teks OpenCV). Pada halaman yang kompleks (koran, formulir, buku), segmentasi baris/wilayah dan inferensi urutan baca penting:Kraken mengimplementasikan segmentasi zona/garis tradisional dan segmentasi baseline saraf, dengan dukungan eksplisit untuk berbagai skrip dan arah (LTR/RTL/vertikal).

Model pengenalan. Kuda beban open-source klasik Tesseract (sumber terbuka oleh Google, dengan akar di HP) berevolusi dari pengklasifikasi karakter menjadi pengenal urutan berbasis LSTM dan dapat menghasilkan PDF yang dapat dicari, output ramah hOCR/ALTO, dan lainnya dari CLI. Pengenal modern mengandalkan pemodelan urutan tanpa karakter yang telah disegmentasi sebelumnya. Klasifikasi Temporal Connectionist (CTC) tetap menjadi dasar, mempelajari penyelarasan antara urutan fitur input dan string label output; ini banyak digunakan dalam alur kerja tulisan tangan dan teks pemandangan.

Dalam beberapa tahun terakhir, Transformer telah membentuk kembali OCR. TrOCR menggunakan encoder Vision Transformer plus decoder Text Transformer, dilatih pada korpora sintetis besar kemudian disesuaikan dengan data nyata, dengan kinerja yang kuat di seluruh tolok ukur cetak, tulisan tangan, dan teks pemandangan (lihat juga Dokumentasi Hugging Face). Secara paralel, beberapa sistem menghindari OCR untuk pemahaman hilir: Donut (Document Understanding Transformer) adalah encoder-decoder bebas OCR yang secara langsung menghasilkan jawaban terstruktur (seperti JSON kunci-nilai) dari dokumen gambar (repo, kartu model), menghindari akumulasi kesalahan saat langkah OCR terpisah memberi makan sistem IE.

Mesin dan perpustakaan

Jika Anda ingin membaca teks yang disertakan dengan baterai di banyak skrip, EasyOCR menawarkan API sederhana dengan 80+ model bahasa, mengembalikan kotak, teks, dan kepercayaan—berguna untuk prototipe dan skrip non-Latin. Untuk dokumen bersejarah, Kraken bersinar dengan segmentasi baseline dan urutan baca yang sadar skrip; untuk pelatihan tingkat baris yang fleksibel, Calamari membangun di atas garis keturunan Ocropy (Ocropy) dengan pengenal (multi-)LSTM+CTC dan CLI untuk menyempurnakan model kustom.

Dataset dan tolok ukur

Generalisasi bergantung pada data. Untuk tulisan tangan, Database Tulisan Tangan IAM menyediakan kalimat bahasa Inggris yang beragam penulis untuk pelatihan dan evaluasi; ini adalah set referensi yang sudah lama ada untuk pengenalan baris dan kata. Untuk teks pemandangan, COCO-Text melapisi anotasi ekstensif di atas MS-COCO, dengan label untuk cetak/tulisan tangan, terbaca/tidak terbaca, skrip, dan transkripsi penuh (lihat juga halaman proyek asli). Bidang ini juga sangat bergantung pada pra-pelatihan sintetis: SynthText in the Wild merender teks ke dalam foto dengan geometri dan pencahayaan yang realistis, menyediakan volume data yang sangat besar untuk pra-pelatihan detektor dan pengenal (referensi kode & data).

Kompetisi di bawah payung Robust Reading ICDAR menjaga evaluasi tetap membumi. Tugas-tugas terbaru menekankan deteksi/pembacaan ujung-ke-ujung dan mencakup menghubungkan kata-kata menjadi frasa, dengan pelaporan kode resmi presisi/perolehan kembali/F-score, persimpangan-atas-gabungan (IoU), dan metrik jarak edit tingkat karakter—mencerminkan apa yang harus dilacak oleh para praktisi.

Format output dan penggunaan hilir

OCR jarang berakhir pada teks biasa. Arsip dan perpustakaan digital lebih suka ALTO XML karena mengkodekan tata letak fisik (blok/baris/kata dengan koordinat) di samping konten, dan itu berpasangan dengan baik dengan kemasan METS. hOCR mikroformat, sebaliknya, menyematkan ide yang sama ke dalam HTML/CSS menggunakan kelas seperti ocr_line dan ocrx_word, membuatnya mudah untuk ditampilkan, diedit, dan diubah dengan perkakas web. Tesseract mengekspos keduanya—misalnya, menghasilkan hOCR atau PDF yang dapat dicari langsung dari CLI (panduan output PDF); Pembungkus Python seperti pytesseract menambahkan kenyamanan. Konverter ada untuk menerjemahkan antara hOCR dan ALTO ketika repositori memiliki standar penyerapan tetap —lihat daftar yang dikurasi ini dari alat format file OCR.

Panduan praktis

  • Mulai dengan data & kebersihan. Jika gambar Anda adalah foto telepon atau pindaian berkualitas campuran, berinvestasi dalam thresholding (adaptif & Otsu) dan deskew (Hough) sebelum penyetelan model apa pun. Anda akan sering mendapatkan lebih banyak dari resep pra-pemrosesan yang kuat daripada dari menukar pengenal.
  • Pilih detektor yang tepat. Untuk halaman yang dipindai dengan kolom biasa, segmenter halaman (zona → baris) mungkin cukup; untuk gambar alami, detektor sekali tembak seperti EAST adalah baseline yang kuat dan dicolokkan ke banyak toolkit (Contoh OpenCV).
  • Pilih pengenal yang cocok dengan teks Anda. Untuk bahasa Latin cetak, Tesseract (LSTM/OEM) kokoh dan cepat; untuk multi-skrip atau prototipe cepat, EasyOCR produktif; untuk tulisan tangan atau jenis huruf historis, pertimbangkan Kraken atau Calamari dan rencanakan untuk menyempurnakan. Jika Anda memerlukan kopling yang erat untuk pemahaman dokumen (ekstraksi kunci-nilai, VQA), evaluasi TrOCR (OCR) versus Donut (bebas OCR) pada skema Anda—Donut dapat menghapus seluruh langkah integrasi.
  • Ukur apa yang penting. Untuk sistem ujung-ke-ujung, laporkan deteksi F-score dan pengenalan CER/WER (keduanya berdasarkan jarak edit Levenshtein ; lihat CTC); untuk tugas-tugas berat tata letak, lacak IoU/ketatnya dan jarak edit yang dinormalisasi tingkat karakter seperti di kit evaluasi ICDAR RRC .
  • Ekspor output yang kaya. Lebih suka hOCR /ALTO (atau keduanya) sehingga Anda menyimpan koordinat dan urutan baca—penting untuk penyorotan hasil pencarian, ekstraksi tabel/bidang , dan asal-usul. CLI Tesseract dan pytesseract menjadikannya satu baris.

Melihat ke depan

Tren terkuat adalah konvergensi: deteksi, pengenalan, pemodelan bahasa, dan bahkan decoding khusus tugas sedang bergabung menjadi tumpukan Transformer terpadu. Pra-pelatihan pada korpora sintetis besar tetap menjadi pengganda kekuatan. Model bebas OCR akan bersaing secara agresif di mana pun targetnya adalah output terstruktur daripada transkrip verbatim. Harapkan juga penerapan hibrida: detektor ringan plus pengenal gaya TrOCR untuk teks bentuk panjang, dan model gaya Donat untuk formulir dan tanda terima.

Bacaan lebih lanjut & alat

Tesseract (GitHub) · Dokumentasi Tesseract · Spesifikasi hOCR · Latar belakang ALTO · Detektor EAST · Deteksi Teks OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Tulisan Tangan IAM · Alat format file OCR · EasyOCR

Pertanyaan yang Sering Diajukan

Apa itu OCR?

Optical Character Recognition (OCR) adalah teknologi yang digunakan untuk mengubah berbagai jenis dokumen, seperti dokumen kertas yang telah dipindai, file PDF, atau gambar yang ditangkap oleh kamera digital, menjadi data yang dapat diedit dan dicari.

Bagaimana OCR bekerja?

OCR bekerja dengan memindai gambar atau dokumen input, membagi gambar menjadi karakter individu, dan membandingkan setiap karakter dengan database bentuk karakter menggunakan pengenalan pola atau pengenalan fitur.

Apa beberapa aplikasi praktis dari OCR?

OCR digunakan dalam berbagai sektor dan aplikasi, termasuk mendigitalkan dokumen yang dicetak, mengaktifkan layanan teks-ke-suara, mengotomatisasi proses entri data, dan membantu pengguna dengan gangguan penglihatan untuk berinteraksi lebih baik dengan teks.

Apakah OCR selalu 100% akurat?

Meskipun telah ada kemajuan besar dalam teknologi OCR, tetapi itu tidak sempurna. Akurasi dapat bervariasi tergantung pada kualitas dokumen asli dan spesifik dari software OCR yang digunakan.

Bisakah OCR mengenali tulisan tangan?

Meskipun OCR sebagian besar dirancang untuk teks cetak, beberapa sistem OCR lanjutan juga mampu mengenali tulisan tangan yang jelas dan konsisten. Namun, biasanya pengenalan tulisan tangan kurang akurat karena variasi besar dalam gaya tulisan individu.

Bisakah OCR menangani beberapa bahasa?

Ya, banyak sistem software OCR dapat mengenali beberapa bahasa. Namun, penting untuk memastikan bahwa bahasa spesifik tersebut didukung oleh software yang Anda gunakan.

Apa perbedaan antara OCR dan ICR?

OCR berarti Optical Character Recognition dan digunakan untuk mengenali teks cetak, sedangkan ICR, atau Intelligent Character Recognition, lebih canggih dan digunakan untuk mengenali teks tulisan tangan.

Apakah OCR bekerja dengan font dan ukuran teks apa pun?

OCR bekerja terbaik dengan font yang jelas, mudah dibaca dan ukuran teks standar. Meski bisa bekerja dengan berbagai font dan ukuran, akurasi cenderung menurun ketika berhadapan dengan font yang tidak biasa atau ukuran teks sangat kecil.

Apa saja keterbatasan teknologi OCR?

OCR bisa kesulitan dengan dokumen beresolusi rendah, font yang rumit, teks yang dicetak buruk, tulisan tangan, dan dokumen dengan latar belakang yang mengganggu teks. Juga, meskipun dapat bekerja dengan banyak bahasa, mungkin tidak mencakup setiap bahasa secara sempurna.

Bisakah OCR memindai teks berwarna atau latar belakang berwarna?

Ya, OCR dapat memindai teks berwarna dan latar belakang berwarna, meskipun umumnya lebih efektif dengan kombinasi warna kontras tinggi, seperti teks hitam pada latar belakang putih. Akurasi mungkin berkurang ketika warna teks dan latar belakang tidak memiliki kontras yang cukup.

Apa itu format FF?

Farbfeld

Format gambar FF (Fast Format) adalah entri yang relatif baru dalam bidang pengodean gambar digital, yang dirancang khusus untuk memenuhi permintaan yang meningkat akan pemrosesan dan transfer gambar berkecepatan tinggi di berbagai perangkat dan platform. Tidak seperti format tradisional seperti JPEG, PNG, atau GIF, format FF menekankan waktu pemuatan yang cepat, kehilangan data minimal selama kompresi, dan struktur fleksibel yang mendukung berbagai jenis gambar dari foto yang sangat detail hingga grafik sederhana. Pengembangannya merupakan respons terhadap kebutuhan teknologi pencitraan digital dan internet yang terus berkembang, di mana kecepatan dan efisiensi menjadi sangat penting.

Salah satu aspek dasar dari format FF adalah algoritma kompresinya yang unik, yang menyeimbangkan kebutuhan akan kualitas dan kecepatan. Algoritma ini menggunakan kombinasi teknik kompresi lossy dan lossless, menyesuaikan secara dinamis dengan konten gambar untuk memastikan kinerja yang optimal. Untuk gambar detail dengan rentang warna yang lebar, format FF menggunakan metode kompresi lossy yang canggih yang mengurangi ukuran file secara signifikan tanpa penurunan kualitas yang nyata. Sebaliknya, untuk grafik yang lebih sederhana dengan warna yang lebih sedikit, ia menerapkan kompresi lossless, menjaga ketajaman dan kejelasan gambar asli.

Struktur file FF dirancang agar kuat dan fleksibel, mendukung berbagai jenis metadata dan ruang warna. Pada intinya, format ini menggunakan wadah yang dapat menampung beberapa aliran data, termasuk data gambar, informasi profil warna, dan metadata tambahan apa pun seperti pemberitahuan hak cipta atau data GPS. Pendekatan modular ini tidak hanya memfasilitasi informasi gambar yang lebih kaya tetapi juga meningkatkan kompatibilitas dengan perangkat dan perangkat lunak yang berbeda, memastikan bahwa gambar dapat ditampilkan dan diproses secara akurat terlepas dari platformnya.

Fitur khas dari format FF adalah dukungannya untuk gambar rentang dinamis tinggi (HDR) dan gamut warna lebar (WCG), yang menjadi semakin populer dalam fotografi, sinema, dan bahkan ponsel cerdas. Arsitektur format FF memungkinkannya untuk menyimpan gambar dengan kedalaman bit yang lebih tinggi dan rentang warna yang lebih luas, memungkinkan gambar yang lebih detail dan hidup. Kemampuan ini sangat penting bagi para profesional di bidang fotografi dan media visual, di mana akurasi warna dan fidelitas gambar sangat penting.

Aspek penting lainnya dari format FF adalah fokusnya pada kecepatan, khususnya dalam hal decoding dan rendering gambar pada perangkat. Format ini dirancang untuk memanfaatkan perangkat keras modern, termasuk GPU dan CPU multi-inti, untuk mempercepat tugas pemrosesan gambar. Ini menggabungkan teknik pemrosesan paralel dan struktur pengkodean yang efisien yang memungkinkan decoding dan rendering yang cepat, bahkan untuk gambar beresolusi tinggi. Hal ini membuat format FF sangat cocok untuk aplikasi di mana kecepatan sangat penting, seperti streaming video real-time, grafik game online, dan desain web yang responsif.

Format FF juga mengatasi masalah keamanan gambar dan perlindungan hak cipta, yang menjadi perhatian yang semakin penting di era digital. Ini mencakup dukungan bawaan untuk enkripsi dan tanda air digital, yang memungkinkan pembuat konten untuk mengamankan gambar mereka dari penggunaan yang tidak sah. Fitur enkripsi memungkinkan transmisi gambar yang aman melalui internet, sementara tanda air digital membantu dalam melacak dan mengelola pelanggaran hak cipta. Langkah-langkah keamanan ini terintegrasi dengan mulus ke dalam format FF, memastikan bahwa mereka tidak mengorbankan kecepatan atau kualitas gambar.

Interoperabilitas adalah kekuatan utama lainnya dari format FF. Ini dirancang untuk bekerja dengan mulus di berbagai sistem operasi, perangkat, dan browser tanpa memerlukan plugin atau konverter khusus. Kompatibilitas universal ini dicapai melalui standar terbuka dan strategi adopsi luas yang melibatkan kolaborasi dengan produsen perangkat, pengembang perangkat lunak, dan platform online. Dengan memastikan bahwa format FF dapat dengan mudah diintegrasikan ke dalam ekosistem yang ada, pengembangnya bertujuan untuk memfasilitasi adopsi dan penggunaannya secara luas.

Integrasi fitur pemrosesan gambar canggih seperti koreksi warna otomatis, stabilisasi gambar, dan pengurangan noise semakin membedakan format FF dari format lainnya. Fitur-fitur ini didukung oleh kecerdasan buatan dan algoritma pembelajaran mesin yang menganalisis konten gambar dan menerapkan koreksi atau penyempurnaan sesuai kebutuhan. Kemampuan tersebut tidak hanya meningkatkan kualitas visual gambar tetapi juga menyederhanakan alur kerja pasca-pemrosesan untuk fotografer dan desainer grafis, menghemat waktu dan tenaga.

Terlepas dari banyak manfaatnya, adopsi format FF menghadapi tantangan, terutama karena dominasi format gambar yang sudah ada dan kelembaman yang terkait dengan migrasi ke format baru. Namun, pengembang dan pendukungnya secara aktif bekerja untuk mengatasi hambatan ini melalui edukasi, menunjukkan keunggulan format FF dan menyediakan alat yang mudah digunakan untuk konversi dan integrasi. Karena semakin banyak pengguna yang merasakan manfaat format FF secara langsung, adopsi format ini diharapkan akan tumbuh, secara bertahap menggantikan atau melengkapi format gambar tradisional.

Format FF juga memiliki aplikasi potensial di luar sekadar gambar statis. Algoritma kompresinya yang efisien dan kemampuan pemrosesan yang cepat menjadikannya pilihan yang sangat baik untuk grafik animasi dan klip video pendek. Kemampuan beradaptasi ini membuka kemungkinan baru untuk desain web, iklan digital, dan konten media sosial, di mana visual yang menarik sangat penting untuk menarik dan mempertahankan perhatian pemirsa. Dengan memperluas jangkauannya ke area-area ini, format FF dapat merevolusi cara konten visual dibuat dan dikonsumsi secara online.

Dampak lingkungan merupakan pertimbangan yang semakin penting dalam teknologi digital, dan di sini juga, format FF memiliki keunggulan. Efisiensi tidak hanya menghemat waktu dan energi pemrosesan tetapi juga mengurangi ruang penyimpanan yang diperlukan untuk gambar, yang mengarah pada konsumsi energi pusat data yang lebih rendah. Di era di mana jejak digital diawasi secara ketat untuk implikasi lingkungannya, adopsi format FF dapat berkontribusi pada praktik komputasi yang lebih berkelanjutan.

Pengembangan format FF merupakan bukti inovasi yang sedang berlangsung di bidang pencitraan digital. Ini merupakan langkah maju yang signifikan dalam memenuhi kebutuhan pengguna dan platform modern, dari perspektif kecepatan, kualitas, keamanan, dan interoperabilitas. Dengan kombinasi fitur yang unik, format FF siap menjadi pemain kunci di masa depan pencitraan digital, membentuk kembali cara gambar disimpan, dibagikan, dan dilihat di dunia yang semakin terhubung dan digerakkan secara visual.

Sebagai kesimpulan, format gambar FF mewakili perkembangan terobosan dalam bidang pencitraan digital, menawarkan solusi komprehensif yang mengatasi keterbatasan format gambar tradisional saat ini. Dengan menggabungkan kecepatan tinggi, efisiensi, kualitas, dan berbagai fitur canggih, format FF memenuhi kebutuhan fotografer, desainer, dan pembuat konten yang terus berkembang, serta persyaratan platform digital modern. Saat diadopsi, format FF akan mengubah lanskap pencitraan digital, menandai era baru konten visual yang lebih cepat, lebih hidup, dan lebih aman dari sebelumnya.

Format yang didukung

AAI.aai

Gambar AAI Dune

AI.ai

Adobe Illustrator CS2

AVIF.avif

Format File Gambar AV1

AVS.avs

Gambar AVS X

BAYER.bayer

Gambar Bayer Mentah

BMP.bmp

Gambar bitmap Windows Microsoft

CIN.cin

File Gambar Cineon

CLIP.clip

Masker Klip Gambar

CMYK.cmyk

Contoh cyan, magenta, kuning, dan hitam mentah

CMYKA.cmyka

Contoh cyan, magenta, kuning, hitam, dan alpha mentah

CUR.cur

Ikon Microsoft

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

Gambar SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Format Dokumen Portabel Terkapsulasi

EPI.epi

Format Interchange PostScript Terkapsulasi Adobe

EPS.eps

PostScript Terkapsulasi Adobe

EPSF.epsf

PostScript Terkapsulasi Adobe

EPSI.epsi

Format Interchange PostScript Terkapsulasi Adobe

EPT.ept

PostScript Terkapsulasi dengan pratinjau TIFF

EPT2.ept2

PostScript Level II Terkapsulasi dengan pratinjau TIFF

EXR.exr

Gambar berdynamik tinggi (HDR)

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Sistem Transportasi Gambar Fleksibel

GIF.gif

Format pertukaran grafis CompuServe

GIF87.gif87

Format pertukaran grafis CompuServe (versi 87a)

GROUP4.group4

CCITT Grup 4 Mentah

HDR.hdr

Gambar Berdynamik Tinggi

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Ikon Microsoft

ICON.icon

Ikon Microsoft

IPL.ipl

Gambar Lokasi IP2

J2C.j2c

Codestream JPEG-2000

J2K.j2k

Codestream JPEG-2000

JNG.jng

Grafik Jaringan JPEG

JP2.jp2

Sintaks Format File JPEG-2000

JPC.jpc

Codestream JPEG-2000

JPE.jpe

Format JFIF Grup Ahli Fotografi Bersama

JPEG.jpeg

Format JFIF Grup Ahli Fotografi Bersama

JPG.jpg

Format JFIF Grup Ahli Fotografi Bersama

JPM.jpm

Sintaks Format File JPEG-2000

JPS.jps

Format JPS Grup Ahli Fotografi Bersama

JPT.jpt

Sintaks Format File JPEG-2000

JXL.jxl

Gambar JPEG XL

MAP.map

Database Gambar Seamless Multi-resolusi (MrSID)

MAT.mat

Format gambar level 5 MATLAB

PAL.pal

Pixmap Palm

PALM.palm

Pixmap Palm

PAM.pam

Format bitmap 2-dimensi umum

PBM.pbm

Format bitmap portabel (hitam dan putih)

PCD.pcd

Photo CD

PCDS.pcds

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Format ImageViewer Database Palm

PDF.pdf

Format Dokumen Portabel

PDFA.pdfa

Format Arsip Dokumen Portabel

PFM.pfm

Format float portabel

PGM.pgm

Format graymap portabel (skala abu-abu)

PGX.pgx

Format tak terkompresi JPEG 2000

PICON.picon

Ikon Pribadi

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Format JFIF Kelompok Ahli Fotografi Bersama

PNG.png

Grafik Jaringan Portabel

PNG00.png00

PNG mewarisi bit-depth, tipe warna dari gambar asli

PNG24.png24

RGB 24-bit transparan atau biner (zlib 1.2.11)

PNG32.png32

RGBA 32-bit transparan atau biner

PNG48.png48

RGB 48-bit transparan atau biner

PNG64.png64

RGBA 64-bit transparan atau biner

PNG8.png8

Indeks 8-bit transparan atau biner

PNM.pnm

Anymap portabel

PPM.ppm

Format pixmap portabel (warna)

PS.ps

File Adobe PostScript

PSB.psb

Format Dokumen Besar Adobe

PSD.psd

Bitmap Adobe Photoshop

RGB.rgb

Contoh merah, hijau, dan biru mentah

RGBA.rgba

Contoh merah, hijau, biru, dan alpha mentah

RGBO.rgbo

Contoh merah, hijau, biru, dan opasitas mentah

SIX.six

Format Grafik DEC SIXEL

SUN.sun

Rasterfile Sun

SVG.svg

Grafik Vektor Skalable

SVGZ.svgz

Grafik Vektor Skalable Terkompresi

TIFF.tiff

Format File Gambar Bertag

VDA.vda

Gambar Truevision Targa

VIPS.vips

Gambar VIPS

WBMP.wbmp

Gambar Bitmap Nirkabel (level 0)

WEBP.webp

Format Gambar WebP

YUV.yuv

CCIR 601 4:1:1 atau 4:2:2

Pertanyaan yang sering diajukan

Bagaimana cara kerjanya?

Konverter ini berjalan sepenuhnya di browser Anda. Saat Anda memilih file, file tersebut dibaca ke dalam memori dan dikonversi ke format yang dipilih. Anda kemudian dapat mengunduh file yang telah dikonversi.

Berapa lama waktu yang dibutuhkan untuk mengonversi file?

Konversi dimulai secara instan, dan sebagian besar file dikonversi dalam waktu kurang dari satu detik. File yang lebih besar mungkin membutuhkan waktu lebih lama.

Apa yang terjadi dengan file saya?

File Anda tidak pernah diunggah ke server kami. File tersebut dikonversi di browser Anda, dan file yang telah dikonversi kemudian diunduh. Kami tidak pernah melihat file Anda.

Jenis file apa yang dapat saya konversi?

Kami mendukung konversi antara semua format gambar, termasuk JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, dan banyak lagi.

Berapa biayanya?

Konverter ini sepenuhnya gratis, dan akan selalu gratis. Karena berjalan di browser Anda, kami tidak perlu membayar server, jadi kami tidak perlu menagih Anda.

Bisakah saya mengonversi banyak file sekaligus?

Ya! Anda dapat mengonversi file sebanyak yang Anda inginkan sekaligus. Cukup pilih beberapa file saat Anda menambahkannya.