OCR de cualquier PCT

Ilimitados trabajos. Tamaño de archivo de hasta 2.5GB. Gratis, para siempre.

Todo local

Nuestro convertidor se ejecuta en su navegador, por lo que nunca vemos sus datos.

Ultrarrápido

No es necesario que subas tus archivos a un servidor: las conversiones comienzan al instante.

Seguro por defecto

A diferencia de otros convertidores, sus archivos nunca se suben a nosotros.

El Reconocimiento Óptico de Caracteres (OCR) convierte imágenes de texto—escaneos, fotos de smartphone, PDFs—en cadenas legibles por máquina y, cada vez más, en datos estructurados. El OCR moderno es una tubería que limpia una imagen, encuentra texto, lo lee y exporta metadatos ricos para que los sistemas posteriores puedan buscar, indexar o extraer campos. Dos estándares de salida ampliamente utilizados son hOCR, un microformato HTML para texto y diseño, y ALTO XML, un esquema orientado a bibliotecas/archivos; ambos preservan posiciones, orden de lectura y otras pistas de diseño y son compatibles con motores populares como Tesseract.

Un recorrido rápido por la tubería

Preprocesamiento. La calidad del OCR comienza con la limpieza de la imagen: conversión a escala de grises, eliminación de ruido, umbralización (binarización) y corrección de inclinación. Los tutoriales canónicos de OpenCV cubren umbralización global, adaptativa y Otsu —elementos básicos para documentos con iluminación no uniforme o histogramas bimodales. Cuando la iluminación varía dentro de una página (piense en las instantáneas del teléfono), los métodos adaptativos a menudo superan a un único umbral global; Otsu elige automáticamente un umbral analizando el histograma. La corrección de la inclinación es igualmente importante: la corrección de inclinación basada en Hough (Transformada de Hough Line) junto con la binarización de Otsu es una receta común y efectiva en las tuberías de preprocesamiento de producción.

Detección vs. reconocimiento. El OCR se divide típicamente en detección de texto (¿dónde está el texto?) y reconocimiento de texto (¿qué dice?). En escenas naturales y muchos escaneos, los detectores totalmente convolucionales como EAST predicen eficientemente cuadriláteros a nivel de palabra o línea sin pesadas etapas de propuesta y se implementan en kits de herramientas comunes (por ejemplo, tutorial de detección de texto de OpenCV). En páginas complejas (periódicos, formularios, libros), la segmentación de líneas/regiones y la inferencia del orden de lectura son importantes:Kraken implementa la segmentación tradicional de zonas/líneas y la segmentación neuronal de línea de base, con soporte explícito para diferentes escrituras y direcciones (LTR/RTL/vertical).

Modelos de reconocimiento. El clásico caballo de batalla de código abierto Tesseract (de código abierto por Google, con raíces en HP) evolucionó de un clasificador de caracteres a un reconocedor de secuencias basado en LSTM y puede emitir archivos PDF con capacidad de búsqueda, salidas compatibles con hOCR/ALTO, y más desde la CLI. Los reconocedores modernos se basan en el modelado de secuencias sin caracteres presegmentados. Clasificación Temporal Conexionista (CTC) sigue siendo fundamental, aprendiendo alineaciones entre secuencias de características de entrada y cadenas de etiquetas de salida; se utiliza ampliamente en tuberías de escritura a mano y texto de escena.

En los últimos años, los Transformers han remodelado el OCR. TrOCR utiliza un codificador Vision Transformer más un decodificador Text Transformer, entrenado en grandes corpus sintéticos y luego ajustado en datos reales, con un sólido rendimiento en benchmarks de texto impreso, manuscrito y de escena (véase también documentación de Hugging Face). En paralelo, algunos sistemas eluden el OCR para la comprensión posterior: Donut (Document Understanding Transformer) es un codificador-decodificador sin OCR que genera directamente respuestas estructuradas (como JSON de clave-valor) a partir de imágenes de documentos (repositorio, tarjeta de modelo), evitando la acumulación de errores cuando un paso de OCR separado alimenta un sistema de IE.

Motores y bibliotecas

Si desea una lectura de texto con todo incluido en muchas escrituras, EasyOCR ofrece una API simple con más de 80 modelos de lenguaje, que devuelve cuadros, texto y confidencias, útil para prototipos y escrituras no latinas. Para documentos históricos, Kraken brilla con la segmentación de línea de base y el orden de lectura consciente de la escritura; para un entrenamiento flexible a nivel de línea, Calamari se basa en el linaje de Ocropy (Ocropy) con reconocedores (multi-)LSTM+CTC y una CLI para ajustar modelos personalizados.

Conjuntos de datos y benchmarks

La generalización depende de los datos. Para la escritura a mano, la Base de datos de escritura a mano IAM proporciona oraciones en inglés de diversos escritores para entrenamiento y evaluación; es un conjunto de referencia de larga data para el reconocimiento de líneas y palabras. Para el texto de escena, COCO-Text superpuso anotaciones extensas sobre MS-COCO, con etiquetas para texto impreso/manuscrito, legible/ilegible, escritura y transcripciones completas (véase también la página original del proyecto). El campo también depende en gran medida del preentrenamiento sintético: SynthText in the Wild representa texto en fotografías con geometría e iluminación realistas, proporcionando enormes volúmenes de datos para preentrenar detectores y reconocedores (referencia código y datos).

Las competiciones bajo el paraguas de Lectura Robusta de ICDAR mantienen la evaluación fundamentada. Las tareas recientes enfatizan la detección/lectura de extremo a extremo e incluyen la vinculación de palabras en frases, con el código oficial informando precisión/recuperación/puntuación F, intersección sobre unión (IoU) y métricas de distancia de edición a nivel de carácter, lo que refleja lo que los profesionales deben rastrear.

Formatos de salida y uso posterior

El OCR rara vez termina en texto plano. Los archivos y las bibliotecas digitales prefieren ALTO XML porque codifica el diseño físico (bloques/líneas/palabras con coordenadas) junto con el contenido, y se combina bien con el empaquetado METS. El microformato hOCR , por el contrario, incorpora la misma idea en HTML/CSS utilizando clases como ocr_line y ocrx_word, lo que facilita su visualización, edición y transformación con herramientas web. Tesseract expone ambos, por ejemplo, generando hOCR o PDF con capacidad de búsqueda directamente desde la CLI (guía de salida de PDF); los envoltorios de Python como pytesseract añaden comodidad. Existen convertidores para traducir entre hOCR y ALTO cuando los repositorios tienen estándares de ingesta fijos —véase esta lista curada de herramientas de formato de archivo OCR.

Orientación práctica

  • Comience con los datos y la limpieza. Si sus imágenes son fotos de teléfono o escaneos de calidad mixta, invierta en umbralización (adaptativa y Otsu) y corrección de inclinación (Hough) antes de cualquier ajuste del modelo. A menudo obtendrá más de una receta de preprocesamiento robusta que de cambiar de reconocedores.
  • Elija el detector adecuado. Para páginas escaneadas con columnas regulares, un segmentador de páginas (zonas → líneas) puede ser suficiente; para imágenes naturales, los detectores de un solo disparo como EAST son líneas de base sólidas y se conectan a muchos kits de herramientas (ejemplo de OpenCV).
  • Elija un reconocedor que coincida con su texto. Para el latín impreso, Tesseract (LSTM/OEM) es robusto y rápido; para múltiples escrituras o prototipos rápidos, EasyOCR es productivo; para escritura a mano o tipos de letra históricos, considere Kraken o Calamari y planee un ajuste fino. Si necesita un acoplamiento estrecho con la comprensión de documentos (extracción de clave-valor, VQA), evalúe TrOCR (OCR) frente a Donut (sin OCR) en su esquema—Donut puede eliminar todo un paso de integración.
  • Mida lo que importa. Para sistemas de extremo a extremo, informe la detección puntuación F y el reconocimiento CER/WER (ambos basados en la distancia de edición de Levenshtein ; véase CTC); para tareas con mucho diseño, rastree la IoU/ajuste y la distancia de edición normalizada a nivel de carácter como en los kits de evaluación de ICDAR RRC .
  • Exporte salidas ricas. Prefiera hOCR /ALTO (o ambos) para mantener las coordenadas y el orden de lectura, vital para resaltar los resultados de búsqueda, la extracción de tablas/campos y la procedencia. La CLI de Tesseract y pytesseract lo convierten en una sola línea.

Mirando hacia el futuro

La tendencia más fuerte es la convergencia: la detección, el reconocimiento, el modelado del lenguaje e incluso la decodificación específica de la tarea se están fusionando en pilas de Transformer unificadas. El preentrenamiento en grandes corpus sintéticos sigue siendo un multiplicador de fuerza. Los modelos sin OCR competirán agresivamente dondequiera que el objetivo sean salidas estructuradas en lugar de transcripciones literales. Espere también implementaciones híbridas: un detector ligero más un reconocedor de estilo TrOCR para texto de formato largo, y un modelo de estilo Donut para formularios y recibos.

Lecturas adicionales y herramientas

Tesseract (GitHub) · Documentación de Tesseract · Especificación de hOCR · Fondo de ALTO · Detector EAST · Detección de texto de OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Escritura a mano de IAM · Herramientas de formato de archivo OCR · EasyOCR

Preguntas frecuentes

¿Qué es OCR?

El Reconocimiento Óptico de Caracteres (OCR) es una tecnología utilizada para convertir diferentes tipos de documentos, como documentos en papel escaneados, archivos PDF o imágenes capturadas por una cámara digital, en datos editables y buscables.

¿Cómo funciona OCR?

OCR funciona escaneando una imagen o documento de entrada, segmentando la imagen en caracteres individuales y comparando cada carácter con una base de datos de formas de caracteres utilizando reconocimiento de patrones o reconocimiento de características.

¿Cuáles son algunas aplicaciones prácticas de OCR?

OCR se utiliza en una variedad de sectores y aplicaciones, incluyendo la digitalización de documentos impresos, la habilitación de servicios de texto a voz, la automatización de procesos de entrada de datos, y ayudar a los usuarios con discapacidad visual a interactuar mejor con el texto.

¿Es OCR siempre 100% exacto?

Aunque se han hecho grandes avances en la tecnología OCR, no es infalible. La precisión puede variar dependiendo de la calidad del documento original y las especificidades del software OCR que se esté utilizando.

¿Puede OCR reconocer la escritura a mano?

Aunque OCR está diseñado principalmente para texto impreso, algunos sistemas avanzados de OCR también pueden reconocer escritura a mano clara y consistente. Sin embargo, en general, el reconocimiento de la escritura a mano es menos preciso debido a la amplia variación en los estilos de escritura individuales.

¿Puede OCR manejar múltiples idiomas?

Sí, muchos sistemas de software OCR pueden reconocer múltiples idiomas. Sin embargo, es importante asegurar que el idioma específico sea soportado por el software que estás utilizando.

¿Cuál es la diferencia entre OCR e ICR?

OCR significa Reconocimiento Óptico de Caracteres y se utiliza para reconocer texto impreso, mientras que ICR, o Reconocimiento Inteligente de Caracteres, es más avanzado y se utiliza para reconocer texto escrito a mano.

¿Funciona OCR con cualquier fuente y tamaño de texto?

OCR funciona mejor con fuentes claras y fáciles de leer y tamaños de texto estándar. Si bien puede funcionar con varias fuentes y tamaños, la precisión tiende a disminuir cuando se trata de fuentes inusuales o tamaños de texto muy pequeños.

¿Cuáles son las limitaciones de la tecnología OCR?

OCR puede tener dificultades con documentos de baja resolución, fuentes complejas, textos mal impresos, escritura a mano y documentos con fondos que interfieren con el texto. Además, aunque puede trabajar con muchos idiomas, puede que no cubra cada idioma a la perfección.

¿Puede OCR escanear texto en color o fondos en color?

Sí, OCR puede escanear texto en color y fondos en color, aunque generalmente es más efectivo con combinaciones de colores de alto contraste, como texto negro sobre un fondo blanco. La precisión puede disminuir cuando los colores del texto y del fondo carecen de suficiente contraste.

¿Qué es el formato PCT?

Apple Macintosh QuickDraw/PICT

El formato de imagen PCT, también conocido como formato Macintosh PICT, es un formato de archivo gráfico que se usaba principalmente en computadoras Macintosh. Originalmente fue diseñado como un formato de metarchivo en la década de 1980, lo que significa que podía contener datos de mapa de bits y vectoriales. Esta versatilidad lo convirtió en una opción popular para almacenar y transferir una amplia gama de tipos gráficos, desde ilustraciones simples hasta imágenes complejas. El formato PCT fue desarrollado por Apple Inc. para facilitar la transferencia de gráficos entre diferentes aplicaciones y para servir como un formato de volcado de gráficos para la biblioteca de gráficos QuickDraw, que era la base de la interfaz gráfica de usuario de los primeros sistemas operativos Macintosh.

El formato PCT es único porque puede almacenar información vectorial y de mapa de bits. Los gráficos vectoriales están formados por rutas definidas por ecuaciones matemáticas, lo que los hace escalables sin pérdida de calidad. Los gráficos de mapa de bits, por otro lado, están compuestos por píxeles, lo que puede resultar en pérdida de detalle cuando se amplían. Al combinar estos dos tipos de datos, los archivos PCT podían almacenar de manera eficiente imágenes complejas como ilustraciones con texto, arte lineal y elementos fotográficos, al tiempo que mantenían la capacidad de escalar ciertas partes de la imagen sin degradación.

Los archivos PCT están estructurados de manera que comienzan con un encabezado de 512 bytes, que normalmente se llena con ceros y no es utilizado por el formato PICT en sí. A esto le sigue el encabezado del archivo PICT, que incluye información importante como el número de versión y el tamaño de la imagen. Al encabezado le siguen los datos de la imagen, que están compuestos por códigos de operación (códigos de operación) que dictan cómo se debe representar la imagen. Estos códigos de operación pueden definir líneas, formas, colores y otros elementos gráficos, así como datos de mapa de bits para imágenes rasterizadas.

Hay dos versiones principales del formato PCT: PICT1 y PICT2. PICT1 es la versión original que admite comandos de dibujo básicos y un número limitado de colores. PICT2, introducido con Macintosh II, agregó soporte para capacidades de imagen más sofisticadas, como color de 24 bits, degradados y compresión JPEG. PICT2 también introdujo el concepto de "regiones" que permitía operaciones de recorte más complejas, donde solo se dibujarían ciertas partes de la imagen, según la región definida.

Una de las características clave del formato PCT es su capacidad para comprimir datos de imagen. Los archivos PCT utilizan RLE (codificación de longitud de ejecución), una forma simple de compresión de datos donde las secuencias del mismo valor de datos se almacenan como un solo valor y un recuento, en lugar de como la ejecución original. Esto es particularmente efectivo para imágenes con grandes áreas de color uniforme. PICT2 mejoró esta capacidad al admitir la compresión JPEG, que es más eficiente para comprimir imágenes fotográficas.

El formato PCT también incluye una serie de otras características que eran avanzadas para su época. Admite múltiples resoluciones, lo que significa que una imagen se puede representar en diferentes niveles de detalle según las capacidades del dispositivo de salida. Esto es particularmente útil cuando la misma imagen se va a mostrar tanto en una pantalla como en una impresora, que normalmente tienen requisitos de resolución muy diferentes. Además, los archivos PCT pueden contener una imagen de vista previa, que es una pequeña representación de mapa de bits de los datos vectoriales. Esto permite que las aplicaciones muestren rápidamente una miniatura de la imagen sin tener que representar todo el gráfico vectorial.

A pesar de sus capacidades, el formato PCT tiene varias limitaciones. Una de las más importantes es su falta de soporte para la transparencia. A diferencia de formatos como GIF y PNG, PCT no permite la creación de imágenes con fondos transparentes o elementos semitransparentes. Esta limitación puede ser problemática al superponer imágenes o cuando una imagen debe colocarse sobre un fondo de colores o patrones variados.

Otra limitación del formato PCT es su dependencia de la plataforma. PCT fue diseñado para el sistema operativo Macintosh y QuickDraw, lo que significa que no es compatible de forma nativa en otras plataformas. Si bien existen herramientas y bibliotecas de terceros que pueden leer y escribir archivos PCT en Windows y otros sistemas operativos, el formato nunca ganó una adopción generalizada fuera de la comunidad Macintosh. Esto ha generado problemas de compatibilidad, especialmente porque el uso de software específico de Macintosh ha disminuido con el tiempo.

El formato PCT también tiene problemas de seguridad. En el pasado, se han descubierto vulnerabilidades en la forma en que algunas aplicaciones manejan los archivos PCT, lo que podría permitir potencialmente la ejecución de código malicioso. Este es un problema común con muchos formatos de archivo, donde la complejidad y la compatibilidad con versiones anteriores pueden provocar descuidos de seguridad. Como resultado, algunas aplicaciones modernas han dejado de admitir el formato PCT o lo manejan en un entorno de espacio aislado más seguro.

En términos de extensión de archivo, los archivos PCT normalmente se guardan con la extensión ".pct" o ".pict". Sin embargo, debido a la naturaleza insensible a mayúsculas y minúsculas del sistema de archivos Macintosh, estas extensiones son intercambiables. Al transferir archivos PCT a sistemas con sistemas de archivos que distinguen entre mayúsculas y minúsculas, como Linux, se debe tener cuidado de mantener la extensión de archivo correcta para fines de compatibilidad.

El formato PCT ha sido reemplazado en gran medida por formatos de imagen más modernos como PNG, JPEG y SVG. Estos formatos ofrecen mejor compresión, soporte de plataforma más amplio y características adicionales como transparencia y animación. Sin embargo, los archivos PCT todavía se utilizan en ciertos sistemas y aplicaciones heredados, particularmente aquellos que fueron diseñados para sistemas operativos Macintosh más antiguos. Por esta razón, comprender el formato PCT puede ser importante cuando se trabaja con materiales gráficos de archivo o cuando se interactúa con software Macintosh más antiguo.

Para los desarrolladores y usuarios que trabajan con archivos PCT, hay una serie de herramientas disponibles para ver, convertir y editar estas imágenes. GraphicConverter es una aplicación popular de Macintosh que puede manejar archivos PCT entre muchos otros formatos. Adobe Photoshop también tiene la capacidad de abrir y convertir archivos PCT, aunque las versiones más nuevas pueden haber dejado de admitirlo debido a la menor relevancia del formato. También hay varias herramientas en línea que permiten a los usuarios convertir archivos PCT a formatos más comunes como JPEG o PNG.

En el ámbito de la programación, se pueden utilizar bibliotecas como ImageMagick y Python Imaging Library (PIL) para manipular archivos PCT mediante programación. Estas bibliotecas proporcionan funciones para leer, escribir y convertir archivos PCT, así como para realizar tareas de procesamiento de imágenes. Sin embargo, los desarrolladores deben ser conscientes de que el soporte para archivos PCT en estas bibliotecas puede ser limitado en comparación con los formatos más modernos, y es posible que se requiera un esfuerzo adicional para manejar los archivos PCT correctamente.

En conclusión, el formato de imagen PCT desempeñó un papel importante en los primeros días de la computación Macintosh, proporcionando una forma flexible y potente de almacenar y manipular gráficos. Si bien ha sido reemplazado en gran medida por formatos más nuevos, su legado continúa en forma de contenido y aplicaciones heredados que aún dependen de este formato que alguna vez fue omnipresente. Comprender los aspectos técnicos de PCT, desde su estructura y capacidades hasta sus limitaciones y problemas de seguridad, es esencial para los profesionales que pueden encontrar este formato en el trabajo de archivo o al interactuar con sistemas Macintosh más antiguos.

Formatos de archivo compatibles

AAI.aai

Imagen Dune AAI

AI.ai

Adobe Illustrator CS2

AVIF.avif

Formato de archivo de imagen AV1

AVS.avs

Imagen X AVS

BAYER.bayer

Imagen Bayer en bruto

BMP.bmp

Imagen bitmap de Microsoft Windows

CIN.cin

Archivo de imagen Cineon

CLIP.clip

Máscara de clip de imagen

CMYK.cmyk

Muestras de cian, magenta, amarillo y negro en bruto

CMYKA.cmyka

Muestras de cian, magenta, amarillo, negro y alfa en bruto

CUR.cur

Icono de Microsoft

DCX.dcx

ZSoft IBM PC Paintbrush multipágina

DDS.dds

Superficie DirectDraw de Microsoft

DPX.dpx

Imagen SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Superficie DirectDraw de Microsoft

EPDF.epdf

Formato de documento portátil encapsulado

EPI.epi

Formato de intercambio PostScript encapsulado de Adobe

EPS.eps

PostScript encapsulado de Adobe

EPSF.epsf

PostScript encapsulado de Adobe

EPSI.epsi

Formato de intercambio PostScript encapsulado de Adobe

EPT.ept

PostScript encapsulado con vista previa TIFF

EPT2.ept2

PostScript encapsulado Nivel II con vista previa TIFF

EXR.exr

Imagen de alto rango dinámico (HDR)

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Sistema de Transporte de Imagen Flexible

GIF.gif

Formato de intercambio de gráficos CompuServe

GIF87.gif87

Formato de intercambio de gráficos CompuServe (versión 87a)

GROUP4.group4

CCITT Grupo 4 en bruto

HDR.hdr

Imagen de alto rango dinámico

HRZ.hrz

Televisión de barrido lento

ICO.ico

Icono de Microsoft

ICON.icon

Icono de Microsoft

IPL.ipl

Imagen de ubicación IP2

J2C.j2c

Flujo JPEG-2000

J2K.j2k

Flujo JPEG-2000

JNG.jng

Gráficos JPEG Network

JP2.jp2

Sintaxis de formato de archivo JPEG-2000

JPC.jpc

Flujo JPEG-2000

JPE.jpe

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

JPEG.jpeg

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

JPG.jpg

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

JPM.jpm

Sintaxis de formato de archivo JPEG-2000

JPS.jps

Formato JPS del Grupo Conjunto de Expertos en Fotografía

JPT.jpt

Sintaxis de formato de archivo JPEG-2000

JXL.jxl

Imagen JPEG XL

MAP.map

Base de datos de imágenes sin costuras multiresolución (MrSID)

MAT.mat

Formato de imagen MATLAB nivel 5

PAL.pal

Mapa de pixeles Palm

PALM.palm

Mapa de pixeles Palm

PAM.pam

Formato común de mapa de bits 2-dimensional

PBM.pbm

Formato de mapa de bits portable (blanco y negro)

PCD.pcd

Photo CD

PCDS.pcds

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Formato Palm Database ImageViewer

PDF.pdf

Formato de Documento Portátil

PDFA.pdfa

Formato de Archivo de Documento Portátil

PFM.pfm

Formato flotante portable

PGM.pgm

Formato de mapa de grises portable (escala de grises)

PGX.pgx

Formato sin comprimir JPEG 2000

PICON.picon

Icono personal

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

PNG.png

Gráficos de red portátiles

PNG00.png00

PNG que hereda profundidad de bits, tipo de color de la imagen original

PNG24.png24

RGB opaco o transparente binario de 24 bits (zlib 1.2.11)

PNG32.png32

RGBA opaco o transparente binario de 32 bits

PNG48.png48

RGB opaco o transparente binario de 48 bits

PNG64.png64

RGBA opaco o transparente binario de 64 bits

PNG8.png8

Índice opaco o transparente binario de 8 bits

PNM.pnm

Anymap portable

PPM.ppm

Formato de mapa de bits portable (color)

PS.ps

Archivo PostScript de Adobe

PSB.psb

Formato de documento grande de Adobe

PSD.psd

Mapa de bits Photoshop de Adobe

RGB.rgb

Muestras de rojo, verde y azul en bruto

RGBA.rgba

Muestras de rojo, verde, azul y alfa en bruto

RGBO.rgbo

Muestras de rojo, verde, azul y opacidad en bruto

SIX.six

Formato de gráficos DEC SIXEL

SUN.sun

Formato Rasterfile de Sun

SVG.svg

Gráficos vectoriales escalables

SVGZ.svgz

Gráficos vectoriales escalables comprimidos

TIFF.tiff

Formato de archivo de imagen etiquetado

VDA.vda

Imagen Truevision Targa

VIPS.vips

Imagen VIPS

WBMP.wbmp

Imagen inalámbrica Bitmap (nivel 0)

WEBP.webp

Formato de imagen WebP

YUV.yuv

CCIR 601 4:1:1 o 4:2:2

Preguntas frecuentes

¿Cómo funciona esto?

Este convertidor funciona completamente en tu navegador. Cuando seleccionas un archivo, se lee en la memoria y se convierte al formato seleccionado. Luego puedes descargar el archivo convertido.

¿Cuánto tarda en convertir un archivo?

Las conversiones comienzan al instante, y la mayoría de los archivos se convierten en menos de un segundo. Archivos más grandes pueden tardar más.

¿Qué sucede con mis archivos?

Tus archivos nunca se suben a nuestros servidores. Se convierten en tu navegador, y el archivo convertido se descarga luego. Nosotros nunca vemos tus archivos.

¿Qué tipos de archivo puedo convertir?

Soportamos la conversión entre todos los formatos de imagen, incluyendo JPEG, PNG, GIF, WebP, SVG, BMP, TIFF y más.

¿Cuánto cuesta esto?

Este convertidor es completamente gratis, y siempre será gratis. Debido a que funciona en tu navegador, no tenemos que pagar por servidores, así que no necesitamos cobrarte.

¿Puedo convertir múltiples archivos a la vez?

¡Sí! Puedes convertir tantos archivos como quieras a la vez. Sólo selecciona múltiples archivos cuando los agregues.