OCR de cualquier PALM

Arrastre y suelte una foto, escaneo o PDF (hasta 2.5GB). Extraemos el texto directamente en su navegador — gratis, ilimitado y sus archivos nunca salen de su dispositivo.

Privado y seguro

Todo sucede en tu navegador. Tus archivos nunca tocan nuestros servidores.

Ultrarrápido

Sin subidas, sin esperas. Convierte en el momento en que sueltas un archivo.

Realmente gratis

No se requiere cuenta. Sin costos ocultos. Sin trucos de tamaño de archivo.

El Reconocimiento Óptico de Caracteres (OCR) convierte imágenes de texto—escaneos, fotos de smartphone, PDFs—en cadenas legibles por máquina y, cada vez más, en datos estructurados. El OCR moderno es una tubería que limpia una imagen, encuentra texto, lo lee y exporta metadatos ricos para que los sistemas posteriores puedan buscar, indexar o extraer campos. Dos estándares de salida ampliamente utilizados son hOCR, un microformato HTML para texto y diseño, y ALTO XML, un esquema orientado a bibliotecas/archivos; ambos preservan posiciones, orden de lectura y otras pistas de diseño y son compatibles con motores populares como Tesseract.

Un recorrido rápido por la tubería

Preprocesamiento. La calidad del OCR comienza con la limpieza de la imagen: conversión a escala de grises, eliminación de ruido, umbralización (binarización) y corrección de inclinación. Los tutoriales canónicos de OpenCV cubren umbralización global, adaptativa y Otsu —elementos básicos para documentos con iluminación no uniforme o histogramas bimodales. Cuando la iluminación varía dentro de una página (piense en las instantáneas del teléfono), los métodos adaptativos a menudo superan a un único umbral global; Otsu elige automáticamente un umbral analizando el histograma. La corrección de la inclinación es igualmente importante: la corrección de inclinación basada en Hough (Transformada de Hough Line) junto con la binarización de Otsu es una receta común y efectiva en las tuberías de preprocesamiento de producción.

Detección vs. reconocimiento. El OCR se divide típicamente en detección de texto (¿dónde está el texto?) y reconocimiento de texto (¿qué dice?). En escenas naturales y muchos escaneos, los detectores totalmente convolucionales como EAST predicen eficientemente cuadriláteros a nivel de palabra o línea sin pesadas etapas de propuesta y se implementan en kits de herramientas comunes (por ejemplo, tutorial de detección de texto de OpenCV). En páginas complejas (periódicos, formularios, libros), la segmentación de líneas/regiones y la inferencia del orden de lectura son importantes:Kraken implementa la segmentación tradicional de zonas/líneas y la segmentación neuronal de línea de base, con soporte explícito para diferentes escrituras y direcciones (LTR/RTL/vertical).

Modelos de reconocimiento. El clásico caballo de batalla de código abierto Tesseract (de código abierto por Google, con raíces en HP) evolucionó de un clasificador de caracteres a un reconocedor de secuencias basado en LSTM y puede emitir archivos PDF con capacidad de búsqueda, salidas compatibles con hOCR/ALTO, y más desde la CLI. Los reconocedores modernos se basan en el modelado de secuencias sin caracteres presegmentados. Clasificación Temporal Conexionista (CTC) sigue siendo fundamental, aprendiendo alineaciones entre secuencias de características de entrada y cadenas de etiquetas de salida; se utiliza ampliamente en tuberías de escritura a mano y texto de escena.

En los últimos años, los Transformers han remodelado el OCR. TrOCR utiliza un codificador Vision Transformer más un decodificador Text Transformer, entrenado en grandes corpus sintéticos y luego ajustado en datos reales, con un sólido rendimiento en benchmarks de texto impreso, manuscrito y de escena (véase también documentación de Hugging Face). En paralelo, algunos sistemas eluden el OCR para la comprensión posterior: Donut (Document Understanding Transformer) es un codificador-decodificador sin OCR que genera directamente respuestas estructuradas (como JSON de clave-valor) a partir de imágenes de documentos (repositorio, tarjeta de modelo), evitando la acumulación de errores cuando un paso de OCR separado alimenta un sistema de IE.

Motores y bibliotecas

Si desea una lectura de texto con todo incluido en muchas escrituras, EasyOCR ofrece una API simple con más de 80 modelos de lenguaje, que devuelve cuadros, texto y confidencias, útil para prototipos y escrituras no latinas. Para documentos históricos, Kraken brilla con la segmentación de línea de base y el orden de lectura consciente de la escritura; para un entrenamiento flexible a nivel de línea, Calamari se basa en el linaje de Ocropy (Ocropy) con reconocedores (multi-)LSTM+CTC y una CLI para ajustar modelos personalizados.

Conjuntos de datos y benchmarks

La generalización depende de los datos. Para la escritura a mano, la Base de datos de escritura a mano IAM proporciona oraciones en inglés de diversos escritores para entrenamiento y evaluación; es un conjunto de referencia de larga data para el reconocimiento de líneas y palabras. Para el texto de escena, COCO-Text superpuso anotaciones extensas sobre MS-COCO, con etiquetas para texto impreso/manuscrito, legible/ilegible, escritura y transcripciones completas (véase también la página original del proyecto). El campo también depende en gran medida del preentrenamiento sintético: SynthText in the Wild representa texto en fotografías con geometría e iluminación realistas, proporcionando enormes volúmenes de datos para preentrenar detectores y reconocedores (referencia código y datos).

Las competiciones bajo el paraguas de Lectura Robusta de ICDAR mantienen la evaluación fundamentada. Las tareas recientes enfatizan la detección/lectura de extremo a extremo e incluyen la vinculación de palabras en frases, con el código oficial informando precisión/recuperación/puntuación F, intersección sobre unión (IoU) y métricas de distancia de edición a nivel de carácter, lo que refleja lo que los profesionales deben rastrear.

Formatos de salida y uso posterior

El OCR rara vez termina en texto plano. Los archivos y las bibliotecas digitales prefieren ALTO XML porque codifica el diseño físico (bloques/líneas/palabras con coordenadas) junto con el contenido, y se combina bien con el empaquetado METS. El microformato hOCR , por el contrario, incorpora la misma idea en HTML/CSS utilizando clases como ocr_line y ocrx_word, lo que facilita su visualización, edición y transformación con herramientas web. Tesseract expone ambos, por ejemplo, generando hOCR o PDF con capacidad de búsqueda directamente desde la CLI (guía de salida de PDF); los envoltorios de Python como pytesseract añaden comodidad. Existen convertidores para traducir entre hOCR y ALTO cuando los repositorios tienen estándares de ingesta fijos —véase esta lista curada de herramientas de formato de archivo OCR.

Orientación práctica

  • Comience con los datos y la limpieza. Si sus imágenes son fotos de teléfono o escaneos de calidad mixta, invierta en umbralización (adaptativa y Otsu) y corrección de inclinación (Hough) antes de cualquier ajuste del modelo. A menudo obtendrá más de una receta de preprocesamiento robusta que de cambiar de reconocedores.
  • Elija el detector adecuado. Para páginas escaneadas con columnas regulares, un segmentador de páginas (zonas → líneas) puede ser suficiente; para imágenes naturales, los detectores de un solo disparo como EAST son líneas de base sólidas y se conectan a muchos kits de herramientas (ejemplo de OpenCV).
  • Elija un reconocedor que coincida con su texto. Para el latín impreso, Tesseract (LSTM/OEM) es robusto y rápido; para múltiples escrituras o prototipos rápidos, EasyOCR es productivo; para escritura a mano o tipos de letra históricos, considere Kraken o Calamari y planee un ajuste fino. Si necesita un acoplamiento estrecho con la comprensión de documentos (extracción de clave-valor, VQA), evalúe TrOCR (OCR) frente a Donut (sin OCR) en su esquema—Donut puede eliminar todo un paso de integración.
  • Mida lo que importa. Para sistemas de extremo a extremo, informe la detección puntuación F y el reconocimiento CER/WER (ambos basados en la distancia de edición de Levenshtein ; véase CTC); para tareas con mucho diseño, rastree la IoU/ajuste y la distancia de edición normalizada a nivel de carácter como en los kits de evaluación de ICDAR RRC .
  • Exporte salidas ricas. Prefiera hOCR /ALTO (o ambos) para mantener las coordenadas y el orden de lectura, vital para resaltar los resultados de búsqueda, la extracción de tablas/campos y la procedencia. La CLI de Tesseract y pytesseract lo convierten en una sola línea.

Mirando hacia el futuro

La tendencia más fuerte es la convergencia: la detección, el reconocimiento, el modelado del lenguaje e incluso la decodificación específica de la tarea se están fusionando en pilas de Transformer unificadas. El preentrenamiento en grandes corpus sintéticos sigue siendo un multiplicador de fuerza. Los modelos sin OCR competirán agresivamente dondequiera que el objetivo sean salidas estructuradas en lugar de transcripciones literales. Espere también implementaciones híbridas: un detector ligero más un reconocedor de estilo TrOCR para texto de formato largo, y un modelo de estilo Donut para formularios y recibos.

Lecturas adicionales y herramientas

Tesseract (GitHub) · Documentación de Tesseract · Especificación de hOCR · Fondo de ALTO · Detector EAST · Detección de texto de OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Escritura a mano de IAM · Herramientas de formato de archivo OCR · EasyOCR

Preguntas frecuentes

¿Qué es OCR?

El Reconocimiento Óptico de Caracteres (OCR) es una tecnología utilizada para convertir diferentes tipos de documentos, como documentos en papel escaneados, archivos PDF o imágenes capturadas por una cámara digital, en datos editables y buscables.

¿Cómo funciona OCR?

OCR funciona escaneando una imagen o documento de entrada, segmentando la imagen en caracteres individuales y comparando cada carácter con una base de datos de formas de caracteres utilizando reconocimiento de patrones o reconocimiento de características.

¿Cuáles son algunas aplicaciones prácticas de OCR?

OCR se utiliza en una variedad de sectores y aplicaciones, incluyendo la digitalización de documentos impresos, la habilitación de servicios de texto a voz, la automatización de procesos de entrada de datos, y ayudar a los usuarios con discapacidad visual a interactuar mejor con el texto.

¿Es OCR siempre 100% exacto?

Aunque se han hecho grandes avances en la tecnología OCR, no es infalible. La precisión puede variar dependiendo de la calidad del documento original y las especificidades del software OCR que se esté utilizando.

¿Puede OCR reconocer la escritura a mano?

Aunque OCR está diseñado principalmente para texto impreso, algunos sistemas avanzados de OCR también pueden reconocer escritura a mano clara y consistente. Sin embargo, en general, el reconocimiento de la escritura a mano es menos preciso debido a la amplia variación en los estilos de escritura individuales.

¿Puede OCR manejar múltiples idiomas?

Sí, muchos sistemas de software OCR pueden reconocer múltiples idiomas. Sin embargo, es importante asegurar que el idioma específico sea soportado por el software que estás utilizando.

¿Cuál es la diferencia entre OCR e ICR?

OCR significa Reconocimiento Óptico de Caracteres y se utiliza para reconocer texto impreso, mientras que ICR, o Reconocimiento Inteligente de Caracteres, es más avanzado y se utiliza para reconocer texto escrito a mano.

¿Funciona OCR con cualquier fuente y tamaño de texto?

OCR funciona mejor con fuentes claras y fáciles de leer y tamaños de texto estándar. Si bien puede funcionar con varias fuentes y tamaños, la precisión tiende a disminuir cuando se trata de fuentes inusuales o tamaños de texto muy pequeños.

¿Cuáles son las limitaciones de la tecnología OCR?

OCR puede tener dificultades con documentos de baja resolución, fuentes complejas, textos mal impresos, escritura a mano y documentos con fondos que interfieren con el texto. Además, aunque puede trabajar con muchos idiomas, puede que no cubra cada idioma a la perfección.

¿Puede OCR escanear texto en color o fondos en color?

Sí, OCR puede escanear texto en color y fondos en color, aunque generalmente es más efectivo con combinaciones de colores de alto contraste, como texto negro sobre un fondo blanco. La precisión puede disminuir cuando los colores del texto y del fondo carecen de suficiente contraste.

¿Qué es el formato PALM?

Mapa de pixeles Palm

El formato de imagen PALM, también conocido como Palm Bitmap, es un formato de archivo de gráficos de mapa de bits asociado con los dispositivos Palm OS. Fue diseñado para almacenar imágenes en PDAs (Asistentes Digitales Personales) con Palm OS, que fueron populares a finales de la década de 1990 y principios de la década de 2000. El formato está específicamente adaptado a las limitaciones de visualización y memoria de estos dispositivos portátiles, por lo que está optimizado para imágenes de baja resolución y color indexado que se pueden representar rápidamente en la pantalla del dispositivo.

Las imágenes PALM se caracterizan por su sencillez y eficiencia. El formato admite una paleta de colores limitada, típicamente hasta 256 colores, lo cual es suficiente para las pequeñas pantallas de los PDAs. Este enfoque de color indexado significa que cada píxel de la imagen no se representa por su propio valor de color, sino por un índice a una tabla de colores que contiene los valores RGB (Rojo, Verde, Azul) reales. Este método de representación de color es muy eficiente en términos de memoria, lo cual es crucial para dispositivos con capacidad de RAM y almacenamiento limitados.

La estructura básica de un archivo de imagen PALM consta de un encabezado, una paleta de colores (si la imagen no es monocroma), datos de mapa de bits y posiblemente información de transparencia. El encabezado contiene metadatos sobre la imagen, como su ancho y alto en píxeles, la profundidad de bits (que determina el número de colores) y banderas que indican si la imagen tiene un índice de transparencia o está comprimida.

La compresión es otra característica del formato de imagen PALM. Para ahorrar aún más espacio, las imágenes PALM se pueden comprimir usando un algoritmo de codificación de longitud de secuencia (RLE). RLE es una forma de compresión de datos sin pérdida donde se almacenan secuencias del mismo valor de datos (secuencias) como un solo valor de datos y un recuento. Esto es particularmente efectivo para imágenes con grandes áreas de color uniforme, que es común en iconos y elementos de la interfaz de usuario utilizados en PDAs.

La transparencia en las imágenes PALM se maneja a través de un índice de transparencia. Este índice apunta a un color en la paleta que se designa como transparente, permitiendo la superposición de imágenes sobre diferentes fondos sin un rectángulo opaco y con bordes ásperos alrededor de la imagen. Esta característica es esencial para crear una interfaz de usuario fluida donde los iconos y otros gráficos deben fundirse con su fondo.

La paleta de colores en una imagen PALM es un componente crítico, ya que define el conjunto de colores utilizados en la imagen. La paleta es un array de entradas de color, donde cada entrada es típicamente un valor de 16 bits que representa un color RGB. La profundidad de bits de la imagen determina el número máximo de colores en la paleta. Por ejemplo, una imagen de 1 bit de profundidad tendría una paleta de 2 colores (generalmente negro y blanco), mientras que una imagen de 8 bits de profundidad podría tener hasta 256 colores.

Los datos del mapa de bits en un archivo de imagen PALM son una representación píxel por píxel de la imagen. Cada píxel se almacena como un índice en la paleta de colores. El almacenamiento de estos datos puede estar en un formato sin comprimir o comprimido mediante RLE. En el formato sin comprimir, los datos del mapa de bits son simplemente una secuencia de índices, uno por cada píxel, ordenados en filas de arriba a abajo y columnas de izquierda a derecha.

Uno de los aspectos únicos del formato de imagen PALM es su soporte para múltiples profundidades de bits dentro de una sola imagen. Esto significa que una imagen puede contener regiones con diferentes resoluciones de color. Por ejemplo, una imagen PALM podría tener un icono de alta profundidad de color (8 bits) junto a un elemento decorativo de baja profundidad de color (1 bit). Esta flexibilidad permite un uso eficiente de la memoria utilizando mayores profundidades de bits solo donde es necesario para la calidad visual de la imagen.

El formato de imagen PALM también incluye soporte para iconos personalizados y gráficos de menú, que son esenciales para la interfaz de usuario de las aplicaciones de Palm OS. Estas imágenes se pueden integrar en el código de la aplicación y mostrarse en el dispositivo usando la API (Interfaz de Programación de Aplicaciones) de Palm OS. La API proporciona funciones para cargar, mostrar y manipular imágenes PALM, lo que facilita a los desarrolladores la incorporación de gráficos en sus aplicaciones.

A pesar de su eficiencia y utilidad en el contexto de los dispositivos Palm OS, el formato de imagen PALM tiene varias limitaciones en comparación con formatos de imagen más modernos. Por ejemplo, no admite imágenes de color verdadero (24 bits o más), lo que limita su uso en aplicaciones que requieren gráficos de alta fidelidad. Además, el formato no admite funciones avanzadas como capas, canales alfa (más allá de la transparencia simple) o metadatos como EXIF (Formato de Archivo de Imagen Intercambiable) que se encuentran comúnmente en formatos como JPEG o PNG.

El formato de imagen PALM no se utiliza ampliamente fuera de los dispositivos y aplicaciones de Palm OS. Con el declive de los PDAs con Palm OS y el auge de los smartphones y otros dispositivos móviles con sistemas operativos y capacidades gráficas más avanzados, el formato PALM se ha vuelto en gran medida obsoleto. Los dispositivos móvmodernos admiten una amplia gama de formatos de imagen, incluidos JPEG, PNG y GIF, que ofrecen una mayor profundidad de color, mejor compresión y más funciones que el formato PALM.

Con fines históricos y de archivo, puede ser necesario convertir imágenes PALM a formatos más contemporáneos. Esto se puede hacer utilizando herramientas de software especializadas que pueden leer el formato PALM y transformarlo en un formato como PNG o JPEG. Estas herramientas suelen analizar la estructura del archivo PALM, extraer los datos del mapa de bits y la paleta de colores, y luego reconstruir la imagen en el formato de destino, preservando la mayor calidad de la imagen original posible.

En cuanto a la extensión de archivo, las imágenes PALM suelen usar la extensión '.pdb' (Palm Database), ya que a menudo se almacenan dentro de archivos de base de datos de Palm, que son contenedores para varios tipos de datos utilizados por las aplicaciones de Palm OS. Los datos de la imagen se almacenan en un registro específico dentro del archivo PDB, al que la aplicación puede acceder según sea necesario. Esta integración con el sistema de base de datos de Palm facilita la agrupación de imágenes con otros datos de la aplicación, como texto o configuraciones.

La creación y manipulación de imágenes PALM requieren un conocimiento de las especificaciones y limitaciones del formato. Los desarrolladores que trabajaban con Palm OS solían utilizar kits de desarrollo de software (SDK) proporcionados por Palm, que incluían herramientas y documentación para trabajar con imágenes PALM. Estos SDK proporcionarían bibliotecas para el manejo de imágenes, permitiendo a los desarrolladores crear, modificar y mostrar imágenes PALM dentro de sus aplicaciones sin tener que manejar los detalles de bajo nivel del formato de archivo.

En conclusión, el formato de imagen PALM desempeñó un papel importante en la era de los PDAs con Palm OS, al proporcionar una forma sencilla y eficiente de manejar gráficos en dispositivos con recursos limitados. Si bien ha sido superado por formatos de imagen más avanzados en el panorama tecnológico actual, comprender el formato PALM ofrece una visión de las consideraciones de diseño y las limitaciones de las plataformas móviles anteriores. Para quienes tratan con aplicaciones o dispositivos heredados de Palm OS, el conocimiento del formato PALM sigue siendo relevante para mantener y convertir los antiguos activos de imágenes.

Formatos de archivo compatibles

AAI.aai

Imagen Dune AAI

AI.ai

Adobe Illustrator CS2

AVIF.avif

Formato de archivo de imagen AV1

BAYER.bayer

Imagen Bayer en bruto

BMP.bmp

Imagen bitmap de Microsoft Windows

CIN.cin

Archivo de imagen Cineon

CLIP.clip

Máscara de clip de imagen

CMYK.cmyk

Muestras de cian, magenta, amarillo y negro en bruto

CUR.cur

Icono de Microsoft

DCX.dcx

ZSoft IBM PC Paintbrush multipágina

DDS.dds

Superficie DirectDraw de Microsoft

DPX.dpx

Imagen SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Superficie DirectDraw de Microsoft

EPDF.epdf

Formato de documento portátil encapsulado

EPI.epi

Formato de intercambio PostScript encapsulado de Adobe

EPS.eps

PostScript encapsulado de Adobe

EPSF.epsf

PostScript encapsulado de Adobe

EPSI.epsi

Formato de intercambio PostScript encapsulado de Adobe

EPT.ept

PostScript encapsulado con vista previa TIFF

EPT2.ept2

PostScript encapsulado Nivel II con vista previa TIFF

EXR.exr

Imagen de alto rango dinámico (HDR)

FF.ff

Farbfeld

FITS.fits

Sistema de Transporte de Imagen Flexible

GIF.gif

Formato de intercambio de gráficos CompuServe

HDR.hdr

Imagen de alto rango dinámico

HEIC.heic

Contenedor de imagen de alta eficiencia

HRZ.hrz

Televisión de barrido lento

ICO.ico

Icono de Microsoft

ICON.icon

Icono de Microsoft

J2C.j2c

Flujo JPEG-2000

J2K.j2k

Flujo JPEG-2000

JNG.jng

Gráficos JPEG Network

JP2.jp2

Sintaxis de formato de archivo JPEG-2000

JPE.jpe

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

JPEG.jpeg

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

JPG.jpg

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

JPM.jpm

Sintaxis de formato de archivo JPEG-2000

JPS.jps

Formato JPS del Grupo Conjunto de Expertos en Fotografía

JPT.jpt

Sintaxis de formato de archivo JPEG-2000

JXL.jxl

Imagen JPEG XL

MAP.map

Base de datos de imágenes sin costuras multiresolución (MrSID)

MAT.mat

Formato de imagen MATLAB nivel 5

PAL.pal

Mapa de pixeles Palm

PALM.palm

Mapa de pixeles Palm

PAM.pam

Formato común de mapa de bits 2-dimensional

PBM.pbm

Formato de mapa de bits portable (blanco y negro)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Formato Palm Database ImageViewer

PDF.pdf

Formato de Documento Portátil

PDFA.pdfa

Formato de Archivo de Documento Portátil

PFM.pfm

Formato flotante portable

PGM.pgm

Formato de mapa de grises portable (escala de grises)

PGX.pgx

Formato sin comprimir JPEG 2000

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

PNG.png

Gráficos de red portátiles

PNG00.png00

PNG que hereda profundidad de bits, tipo de color de la imagen original

PNG24.png24

RGB opaco o transparente binario de 24 bits (zlib 1.2.11)

PNG32.png32

RGBA opaco o transparente binario de 32 bits

PNG48.png48

RGB opaco o transparente binario de 48 bits

PNG64.png64

RGBA opaco o transparente binario de 64 bits

PNG8.png8

Índice opaco o transparente binario de 8 bits

PNM.pnm

Anymap portable

PPM.ppm

Formato de mapa de bits portable (color)

PS.ps

Archivo PostScript de Adobe

PSB.psb

Formato de documento grande de Adobe

PSD.psd

Mapa de bits Photoshop de Adobe

RGB.rgb

Muestras de rojo, verde y azul en bruto

RGBA.rgba

Muestras de rojo, verde, azul y alfa en bruto

RGBO.rgbo

Muestras de rojo, verde, azul y opacidad en bruto

SIX.six

Formato de gráficos DEC SIXEL

SUN.sun

Formato Rasterfile de Sun

SVG.svg

Gráficos vectoriales escalables

TIFF.tiff

Formato de archivo de imagen etiquetado

VDA.vda

Imagen Truevision Targa

VIPS.vips

Imagen VIPS

WBMP.wbmp

Imagen inalámbrica Bitmap (nivel 0)

WEBP.webp

Formato de imagen WebP

YUV.yuv

CCIR 601 4:1:1 o 4:2:2

Preguntas frecuentes

¿Cómo funciona esto?

Este convertidor funciona completamente en tu navegador. Cuando seleccionas un archivo, se lee en la memoria y se convierte al formato seleccionado. Luego puedes descargar el archivo convertido.

¿Cuánto tarda en convertir un archivo?

Las conversiones comienzan al instante, y la mayoría de los archivos se convierten en menos de un segundo. Archivos más grandes pueden tardar más.

¿Qué sucede con mis archivos?

Tus archivos nunca se suben a nuestros servidores. Se convierten en tu navegador, y el archivo convertido se descarga luego. Nosotros nunca vemos tus archivos.

¿Qué tipos de archivo puedo convertir?

Soportamos la conversión entre todos los formatos de imagen, incluyendo JPEG, PNG, GIF, WebP, SVG, BMP, TIFF y más.

¿Cuánto cuesta esto?

Este convertidor es completamente gratis, y siempre será gratis. Debido a que funciona en tu navegador, no tenemos que pagar por servidores, así que no necesitamos cobrarte.

¿Puedo convertir múltiples archivos a la vez?

¡Sí! Puedes convertir tantos archivos como quieras a la vez. Sólo selecciona múltiples archivos cuando los agregues.