OCR de cualquier YUV
Arrastra y suelta o haz clic para seleccionar
Privado y seguro
Todo sucede en tu navegador. Tus archivos nunca tocan nuestros servidores.
Ultrarrápido
Sin subidas, sin esperas. Convierte en el momento en que sueltas un archivo.
Realmente gratis
No se requiere cuenta. Sin costos ocultos. Sin trucos de tamaño de archivo.
El Reconocimiento Óptico de Caracteres (OCR) convierte imágenes de texto—escaneos, fotos de smartphone, PDFs—en cadenas legibles por máquina y, cada vez más, en datos estructurados. El OCR moderno es una tubería que limpia una imagen, encuentra texto, lo lee y exporta metadatos ricos para que los sistemas posteriores puedan buscar, indexar o extraer campos. Dos estándares de salida ampliamente utilizados son hOCR, un microformato HTML para texto y diseño, y ALTO XML, un esquema orientado a bibliotecas/archivos; ambos preservan posiciones, orden de lectura y otras pistas de diseño y son compatibles con motores populares como Tesseract.
Un recorrido rápido por la tubería
Preprocesamiento. La calidad del OCR comienza con la limpieza de la imagen: conversión a escala de grises, eliminación de ruido, umbralización (binarización) y corrección de inclinación. Los tutoriales canónicos de OpenCV cubren umbralización global, adaptativa y Otsu —elementos básicos para documentos con iluminación no uniforme o histogramas bimodales. Cuando la iluminación varía dentro de una página (piense en las instantáneas del teléfono), los métodos adaptativos a menudo superan a un único umbral global; Otsu elige automáticamente un umbral analizando el histograma. La corrección de la inclinación es igualmente importante: la corrección de inclinación basada en Hough (Transformada de Hough Line) junto con la binarización de Otsu es una receta común y efectiva en las tuberías de preprocesamiento de producción.
Detección vs. reconocimiento. El OCR se divide típicamente en detección de texto (¿dónde está el texto?) y reconocimiento de texto (¿qué dice?). En escenas naturales y muchos escaneos, los detectores totalmente convolucionales como EAST predicen eficientemente cuadriláteros a nivel de palabra o línea sin pesadas etapas de propuesta y se implementan en kits de herramientas comunes (por ejemplo, tutorial de detección de texto de OpenCV). En páginas complejas (periódicos, formularios, libros), la segmentación de líneas/regiones y la inferencia del orden de lectura son importantes:Kraken implementa la segmentación tradicional de zonas/líneas y la segmentación neuronal de línea de base, con soporte explícito para diferentes escrituras y direcciones (LTR/RTL/vertical).
Modelos de reconocimiento. El clásico caballo de batalla de código abierto Tesseract (de código abierto por Google, con raíces en HP) evolucionó de un clasificador de caracteres a un reconocedor de secuencias basado en LSTM y puede emitir archivos PDF con capacidad de búsqueda, salidas compatibles con hOCR/ALTO, y más desde la CLI. Los reconocedores modernos se basan en el modelado de secuencias sin caracteres presegmentados. Clasificación Temporal Conexionista (CTC) sigue siendo fundamental, aprendiendo alineaciones entre secuencias de características de entrada y cadenas de etiquetas de salida; se utiliza ampliamente en tuberías de escritura a mano y texto de escena.
En los últimos años, los Transformers han remodelado el OCR. TrOCR utiliza un codificador Vision Transformer más un decodificador Text Transformer, entrenado en grandes corpus sintéticos y luego ajustado en datos reales, con un sólido rendimiento en benchmarks de texto impreso, manuscrito y de escena (véase también documentación de Hugging Face). En paralelo, algunos sistemas eluden el OCR para la comprensión posterior: Donut (Document Understanding Transformer) es un codificador-decodificador sin OCR que genera directamente respuestas estructuradas (como JSON de clave-valor) a partir de imágenes de documentos (repositorio, tarjeta de modelo), evitando la acumulación de errores cuando un paso de OCR separado alimenta un sistema de IE.
Motores y bibliotecas
Si desea una lectura de texto con todo incluido en muchas escrituras, EasyOCR ofrece una API simple con más de 80 modelos de lenguaje, que devuelve cuadros, texto y confidencias, útil para prototipos y escrituras no latinas. Para documentos históricos, Kraken brilla con la segmentación de línea de base y el orden de lectura consciente de la escritura; para un entrenamiento flexible a nivel de línea, Calamari se basa en el linaje de Ocropy (Ocropy) con reconocedores (multi-)LSTM+CTC y una CLI para ajustar modelos personalizados.
Conjuntos de datos y benchmarks
La generalización depende de los datos. Para la escritura a mano, la Base de datos de escritura a mano IAM proporciona oraciones en inglés de diversos escritores para entrenamiento y evaluación; es un conjunto de referencia de larga data para el reconocimiento de líneas y palabras. Para el texto de escena, COCO-Text superpuso anotaciones extensas sobre MS-COCO, con etiquetas para texto impreso/manuscrito, legible/ilegible, escritura y transcripciones completas (véase también la página original del proyecto). El campo también depende en gran medida del preentrenamiento sintético: SynthText in the Wild representa texto en fotografías con geometría e iluminación realistas, proporcionando enormes volúmenes de datos para preentrenar detectores y reconocedores (referencia código y datos).
Las competiciones bajo el paraguas de Lectura Robusta de ICDAR mantienen la evaluación fundamentada. Las tareas recientes enfatizan la detección/lectura de extremo a extremo e incluyen la vinculación de palabras en frases, con el código oficial informando precisión/recuperación/puntuación F, intersección sobre unión (IoU) y métricas de distancia de edición a nivel de carácter, lo que refleja lo que los profesionales deben rastrear.
Formatos de salida y uso posterior
El OCR rara vez termina en texto plano. Los archivos y las bibliotecas digitales prefieren ALTO XML porque codifica el diseño físico (bloques/líneas/palabras con coordenadas) junto con el contenido, y se combina bien con el empaquetado METS. El microformato hOCR , por el contrario, incorpora la misma idea en HTML/CSS utilizando clases como ocr_line y ocrx_word, lo que facilita su visualización, edición y transformación con herramientas web. Tesseract expone ambos, por ejemplo, generando hOCR o PDF con capacidad de búsqueda directamente desde la CLI (guía de salida de PDF); los envoltorios de Python como pytesseract añaden comodidad. Existen convertidores para traducir entre hOCR y ALTO cuando los repositorios tienen estándares de ingesta fijos —véase esta lista curada de herramientas de formato de archivo OCR.
Orientación práctica
- Comience con los datos y la limpieza. Si sus imágenes son fotos de teléfono o escaneos de calidad mixta, invierta en umbralización (adaptativa y Otsu) y corrección de inclinación (Hough) antes de cualquier ajuste del modelo. A menudo obtendrá más de una receta de preprocesamiento robusta que de cambiar de reconocedores.
- Elija el detector adecuado. Para páginas escaneadas con columnas regulares, un segmentador de páginas (zonas → líneas) puede ser suficiente; para imágenes naturales, los detectores de un solo disparo como EAST son líneas de base sólidas y se conectan a muchos kits de herramientas (ejemplo de OpenCV).
- Elija un reconocedor que coincida con su texto. Para el latín impreso, Tesseract (LSTM/OEM) es robusto y rápido; para múltiples escrituras o prototipos rápidos, EasyOCR es productivo; para escritura a mano o tipos de letra históricos, considere Kraken o Calamari y planee un ajuste fino. Si necesita un acoplamiento estrecho con la comprensión de documentos (extracción de clave-valor, VQA), evalúe TrOCR (OCR) frente a Donut (sin OCR) en su esquema—Donut puede eliminar todo un paso de integración.
- Mida lo que importa. Para sistemas de extremo a extremo, informe la detección puntuación F y el reconocimiento CER/WER (ambos basados en la distancia de edición de Levenshtein ; véase CTC); para tareas con mucho diseño, rastree la IoU/ajuste y la distancia de edición normalizada a nivel de carácter como en los kits de evaluación de ICDAR RRC .
- Exporte salidas ricas. Prefiera hOCR /ALTO (o ambos) para mantener las coordenadas y el orden de lectura, vital para resaltar los resultados de búsqueda, la extracción de tablas/campos y la procedencia. La CLI de Tesseract y pytesseract lo convierten en una sola línea.
Mirando hacia el futuro
La tendencia más fuerte es la convergencia: la detección, el reconocimiento, el modelado del lenguaje e incluso la decodificación específica de la tarea se están fusionando en pilas de Transformer unificadas. El preentrenamiento en grandes corpus sintéticos sigue siendo un multiplicador de fuerza. Los modelos sin OCR competirán agresivamente dondequiera que el objetivo sean salidas estructuradas en lugar de transcripciones literales. Espere también implementaciones híbridas: un detector ligero más un reconocedor de estilo TrOCR para texto de formato largo, y un modelo de estilo Donut para formularios y recibos.
Lecturas adicionales y herramientas
Tesseract (GitHub) · Documentación de Tesseract · Especificación de hOCR · Fondo de ALTO · Detector EAST · Detección de texto de OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Escritura a mano de IAM · Herramientas de formato de archivo OCR · EasyOCR
Preguntas frecuentes
¿Qué es OCR?
El Reconocimiento Óptico de Caracteres (OCR) es una tecnología utilizada para convertir diferentes tipos de documentos, como documentos en papel escaneados, archivos PDF o imágenes capturadas por una cámara digital, en datos editables y buscables.
¿Cómo funciona OCR?
OCR funciona escaneando una imagen o documento de entrada, segmentando la imagen en caracteres individuales y comparando cada carácter con una base de datos de formas de caracteres utilizando reconocimiento de patrones o reconocimiento de características.
¿Cuáles son algunas aplicaciones prácticas de OCR?
OCR se utiliza en una variedad de sectores y aplicaciones, incluyendo la digitalización de documentos impresos, la habilitación de servicios de texto a voz, la automatización de procesos de entrada de datos, y ayudar a los usuarios con discapacidad visual a interactuar mejor con el texto.
¿Es OCR siempre 100% exacto?
Aunque se han hecho grandes avances en la tecnología OCR, no es infalible. La precisión puede variar dependiendo de la calidad del documento original y las especificidades del software OCR que se esté utilizando.
¿Puede OCR reconocer la escritura a mano?
Aunque OCR está diseñado principalmente para texto impreso, algunos sistemas avanzados de OCR también pueden reconocer escritura a mano clara y consistente. Sin embargo, en general, el reconocimiento de la escritura a mano es menos preciso debido a la amplia variación en los estilos de escritura individuales.
¿Puede OCR manejar múltiples idiomas?
Sí, muchos sistemas de software OCR pueden reconocer múltiples idiomas. Sin embargo, es importante asegurar que el idioma específico sea soportado por el software que estás utilizando.
¿Cuál es la diferencia entre OCR e ICR?
OCR significa Reconocimiento Óptico de Caracteres y se utiliza para reconocer texto impreso, mientras que ICR, o Reconocimiento Inteligente de Caracteres, es más avanzado y se utiliza para reconocer texto escrito a mano.
¿Funciona OCR con cualquier fuente y tamaño de texto?
OCR funciona mejor con fuentes claras y fáciles de leer y tamaños de texto estándar. Si bien puede funcionar con varias fuentes y tamaños, la precisión tiende a disminuir cuando se trata de fuentes inusuales o tamaños de texto muy pequeños.
¿Cuáles son las limitaciones de la tecnología OCR?
OCR puede tener dificultades con documentos de baja resolución, fuentes complejas, textos mal impresos, escritura a mano y documentos con fondos que interfieren con el texto. Además, aunque puede trabajar con muchos idiomas, puede que no cubra cada idioma a la perfección.
¿Puede OCR escanear texto en color o fondos en color?
Sí, OCR puede escanear texto en color y fondos en color, aunque generalmente es más efectivo con combinaciones de colores de alto contraste, como texto negro sobre un fondo blanco. La precisión puede disminuir cuando los colores del texto y del fondo carecen de suficiente contraste.
¿Qué es el formato YUV?
CCIR 601 4:1:1 o 4:2:2
YCbCrA es un espacio de color y un formato de imagen que se utilizan comúnmente para la compresión de imágenes y vídeos digitales. Separa la información de luminancia (brillo) de la información de crominancia (color), lo que permite comprimirlas de forma independiente para una codificación más eficiente. El espacio de color YCbCrA es una variación del espacio de color YCbCr que añade un canal alfa para la transparencia.
En el espacio de color YCbCrA, Y representa el componente de luminancia, que es el brillo o la intensidad del píxel. Se calcula como una suma ponderada de los componentes de color rojo, verde y azul en función de cómo el ojo humano percibe el brillo. Las ponderaciones se eligen para aproximar la función de luminosidad, que describe la sensibilidad espectral media de la percepción visual humana. El componente de luminancia determina el brillo percibido de un píxel.
Cb y Cr son los componentes de crominancia de diferencia de azul y diferencia de rojo, respectivamente. Representan la información de color en la imagen. Cb se calcula restando la luminancia del componente de color azul, mientras que Cr se calcula restando la luminancia del componente de color rojo. Al separar la información de color en estos componentes de diferencia de color, YCbCrA permite que la información de color se comprima de forma más eficiente que en RGB.
El canal alfa (A) en YCbCrA representa la transparencia u opacidad de cada píxel. Especifica cuánto del color del píxel debe mezclarse con el fondo cuando se renderiza la imagen. Un valor alfa de 0 significa que el píxel es completamente transparente, mientras que un valor alfa de 1 (o 255 en representación de 8 bits) significa que el píxel es completamente opaco. Los valores alfa entre 0 y 1 dan como resultado píxeles parcialmente transparentes que se mezclan con el fondo en diversos grados.
Una de las principales ventajas del espacio de color YCbCrA es que permite una compresión más eficiente en comparación con RGB. El sistema visual humano es más sensible a los cambios de brillo que a los cambios de color. Al separar la información de luminancia y crominancia, YCbCrA permite a los codificadores asignar más bits al componente de luminancia, que transporta la información más importante desde el punto de vista perceptivo, mientras que comprime los componentes de crominancia de forma más agresiva.
Durante la compresión, los componentes de luminancia y crominancia se pueden submuestrear a diferentes velocidades. El submuestreo reduce la resolución espacial de los componentes de crominancia mientras conserva la resolución completa del componente de luminancia. Los esquemas de submuestreo comunes incluyen 4:4:4 (sin submuestreo), 4:2:2 (crominancia submuestreada horizontalmente por un factor de 2) y 4:2:0 (crominancia submuestreada horizontal y verticalmente por un factor de 2). El submuestreo aprovecha la menor sensibilidad del sistema visual humano a los detalles de color, lo que permite mayores relaciones de compresión sin una pérdida significativa de calidad perceptiva.
El formato de imagen YCbCrA se utiliza ampliamente en estándares de compresión de vídeo e imagen como JPEG, MPEG y H.264/AVC. Estos estándares emplean diversas técnicas para comprimir los datos YCbCrA, incluido el submuestreo de crominancia, la transformada discreta del coseno (DCT), la cuantificación y la codificación de entropía.
Al comprimir una imagen o un fotograma de vídeo, los datos YCbCrA se someten a una serie de transformaciones y pasos de compresión. La imagen se convierte primero de RGB al espacio de color YCbCrA. A continuación, los componentes de luminancia y crominancia se dividen en bloques, normalmente de tamaño 8x8 o 16x16 píxeles. Cada bloque se somete a una transformada discreta del coseno (DCT), que convierte los valores de los píxeles espaciales en coeficientes de frecuencia.
A continuación, los coeficientes de la DCT se cuantifican, lo que divide cada coeficiente por un tamaño de paso de cuantificación y redondea el resultado al entero más cercano. La cuantificación introduce una compresión con pérdida al descartar información de alta frecuencia que es menos importante desde el punto de vista perceptivo. Los tamaños de paso de cuantificación se pueden ajustar para controlar el equilibrio entre la relación de compresión y la calidad de la imagen.
Después de la cuantificación, los coeficientes se reordenan en un patrón en zigzag para agrupar los coeficientes de baja frecuencia, que tienden a tener magnitudes mayores. Los coeficientes reordenados se codifican entonces por entropía utilizando técnicas como la codificación de Huffman o la codificación aritmética. La codificación de entropía asigna palabras de código más cortas a los coeficientes que aparecen con más frecuencia, reduciendo aún más el tamaño de los datos comprimidos.
Para descomprimir una imagen YCbCrA, se aplica el proceso inverso. Los datos codificados por entropía se decodifican para recuperar los coeficientes DCT cuantificados. A continuación, los coeficientes se descuantifican multiplicándolos por los correspondientes tamaños de paso de cuantificación. Se realiza una DCT inversa sobre los coeficientes descuantificados para reconstruir los bloques YCbCrA. Por último, los datos YCbCrA se convierten de nuevo al espacio de color RGB para su visualización o procesamiento posterior.
El canal alfa en YCbCrA suele comprimirse por separado de los componentes de luminancia y crominancia. Se puede codificar utilizando varios métodos, como la codificación de longitud de ejecución o la compresión basada en bloques. El canal alfa permite efectos de transparencia, como la superposición de imágenes o vídeos unos sobre otros con opacidad variable.
YCbCrA ofrece varias ventajas sobre otros espacios de color y formatos de imagen. Su separación de la información de luminancia y crominancia permite una compresión más eficiente, ya que el sistema visual humano es más sensible a las variaciones de brillo que a las variaciones de color. El submuestreo de los componentes de crominancia reduce aún más la cantidad de datos que deben comprimirse sin afectar significativamente a la calidad perceptiva.
Además, la compatibilidad de YCbCrA con estándares de compresión populares como JPEG y MPEG hace que sea ampliamente compatible con diferentes plataformas y dispositivos. Su capacidad para incorporar un canal alfa para la transparencia también lo hace adecuado para aplicaciones que requieren composición o mezcla de imágenes.
Sin embargo, YCbCrA no está exento de limitaciones. La conversión de RGB a YCbCrA y viceversa puede introducir cierta distorsión de color, especialmente si los componentes de crominancia están muy comprimidos. El submuestreo de los componentes de crominancia también puede provocar sangrado de color o artefactos en zonas con transiciones de color bruscas.
A pesar de estas limitaciones, YCbCrA sigue siendo una opción popular para la compresión de imágenes y vídeos debido a su eficiencia y amplia compatibilidad. Logra un equilibrio entre el rendimiento de la compresión y la calidad visual, lo que lo hace adecuado para una amplia gama de aplicaciones, desde cámaras digitales y transmisión de vídeo hasta gráficos y juegos.
A medida que la tecnología avanza, pueden surgir nuevas técnicas y formatos de compresión para abordar las limitaciones de YCbCrA y proporcionar una eficiencia de compresión y una calidad visual aún mejores. Sin embargo, es probable que los principios fundamentales de separación de la información de luminancia y crominancia, submuestreo y codificación de transformadas sigan siendo relevantes en los futuros estándares de compresión de imágenes y vídeos.
En conclusión, YCbCrA es un espacio de color y un formato de imagen que ofrece una compresión eficiente al separar la información de luminancia y crominancia y permitir el submuestreo de crominancia. Su inclusión de un canal alfa para la transparencia lo hace versátil para diversas aplicaciones. Aunque tiene algunas limitaciones, la compatibilidad de YCbCrA con los estándares de compresión populares y su equilibrio entre el rendimiento de la compresión y la calidad visual lo convierten en una opción ampliamente utilizada en el campo de la compresión de imágenes y vídeos.
Formatos de archivo compatibles
AAI.aai
Imagen Dune AAI
AI.ai
Adobe Illustrator CS2
AVIF.avif
Formato de archivo de imagen AV1
BAYER.bayer
Imagen Bayer en bruto
BMP.bmp
Imagen bitmap de Microsoft Windows
CIN.cin
Archivo de imagen Cineon
CLIP.clip
Máscara de clip de imagen
CMYK.cmyk
Muestras de cian, magenta, amarillo y negro en bruto
CUR.cur
Icono de Microsoft
DCX.dcx
ZSoft IBM PC Paintbrush multipágina
DDS.dds
Superficie DirectDraw de Microsoft
DPX.dpx
Imagen SMTPE 268M-2003 (DPX 2.0)
DXT1.dxt1
Superficie DirectDraw de Microsoft
EPDF.epdf
Formato de documento portátil encapsulado
EPI.epi
Formato de intercambio PostScript encapsulado de Adobe
EPS.eps
PostScript encapsulado de Adobe
EPSF.epsf
PostScript encapsulado de Adobe
EPSI.epsi
Formato de intercambio PostScript encapsulado de Adobe
EPT.ept
PostScript encapsulado con vista previa TIFF
EPT2.ept2
PostScript encapsulado Nivel II con vista previa TIFF
EXR.exr
Imagen de alto rango dinámico (HDR)
FF.ff
Farbfeld
FITS.fits
Sistema de Transporte de Imagen Flexible
GIF.gif
Formato de intercambio de gráficos CompuServe
HDR.hdr
Imagen de alto rango dinámico
HEIC.heic
Contenedor de imagen de alta eficiencia
HRZ.hrz
Televisión de barrido lento
ICO.ico
Icono de Microsoft
ICON.icon
Icono de Microsoft
J2C.j2c
Flujo JPEG-2000
J2K.j2k
Flujo JPEG-2000
JNG.jng
Gráficos JPEG Network
JP2.jp2
Sintaxis de formato de archivo JPEG-2000
JPE.jpe
Formato JFIF del Grupo Conjunto de Expertos en Fotografía
JPEG.jpeg
Formato JFIF del Grupo Conjunto de Expertos en Fotografía
JPG.jpg
Formato JFIF del Grupo Conjunto de Expertos en Fotografía
JPM.jpm
Sintaxis de formato de archivo JPEG-2000
JPS.jps
Formato JPS del Grupo Conjunto de Expertos en Fotografía
JPT.jpt
Sintaxis de formato de archivo JPEG-2000
JXL.jxl
Imagen JPEG XL
MAP.map
Base de datos de imágenes sin costuras multiresolución (MrSID)
MAT.mat
Formato de imagen MATLAB nivel 5
PAL.pal
Mapa de pixeles Palm
PALM.palm
Mapa de pixeles Palm
PAM.pam
Formato común de mapa de bits 2-dimensional
PBM.pbm
Formato de mapa de bits portable (blanco y negro)
PCD.pcd
Photo CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Formato Palm Database ImageViewer
PDF.pdf
Formato de Documento Portátil
PDFA.pdfa
Formato de Archivo de Documento Portátil
PFM.pfm
Formato flotante portable
PGM.pgm
Formato de mapa de grises portable (escala de grises)
PGX.pgx
Formato sin comprimir JPEG 2000
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Formato JFIF del Grupo Conjunto de Expertos en Fotografía
PNG.png
Gráficos de red portátiles
PNG00.png00
PNG que hereda profundidad de bits, tipo de color de la imagen original
PNG24.png24
RGB opaco o transparente binario de 24 bits (zlib 1.2.11)
PNG32.png32
RGBA opaco o transparente binario de 32 bits
PNG48.png48
RGB opaco o transparente binario de 48 bits
PNG64.png64
RGBA opaco o transparente binario de 64 bits
PNG8.png8
Índice opaco o transparente binario de 8 bits
PNM.pnm
Anymap portable
PPM.ppm
Formato de mapa de bits portable (color)
PS.ps
Archivo PostScript de Adobe
PSB.psb
Formato de documento grande de Adobe
PSD.psd
Mapa de bits Photoshop de Adobe
RGB.rgb
Muestras de rojo, verde y azul en bruto
RGBA.rgba
Muestras de rojo, verde, azul y alfa en bruto
RGBO.rgbo
Muestras de rojo, verde, azul y opacidad en bruto
SIX.six
Formato de gráficos DEC SIXEL
SUN.sun
Formato Rasterfile de Sun
SVG.svg
Gráficos vectoriales escalables
TIFF.tiff
Formato de archivo de imagen etiquetado
VDA.vda
Imagen Truevision Targa
VIPS.vips
Imagen VIPS
WBMP.wbmp
Imagen inalámbrica Bitmap (nivel 0)
WEBP.webp
Formato de imagen WebP
YUV.yuv
CCIR 601 4:1:1 o 4:2:2
Preguntas frecuentes
¿Cómo funciona esto?
Este convertidor funciona completamente en tu navegador. Cuando seleccionas un archivo, se lee en la memoria y se convierte al formato seleccionado. Luego puedes descargar el archivo convertido.
¿Cuánto tarda en convertir un archivo?
Las conversiones comienzan al instante, y la mayoría de los archivos se convierten en menos de un segundo. Archivos más grandes pueden tardar más.
¿Qué sucede con mis archivos?
Tus archivos nunca se suben a nuestros servidores. Se convierten en tu navegador, y el archivo convertido se descarga luego. Nosotros nunca vemos tus archivos.
¿Qué tipos de archivo puedo convertir?
Soportamos la conversión entre todos los formatos de imagen, incluyendo JPEG, PNG, GIF, WebP, SVG, BMP, TIFF y más.
¿Cuánto cuesta esto?
Este convertidor es completamente gratis, y siempre será gratis. Debido a que funciona en tu navegador, no tenemos que pagar por servidores, así que no necesitamos cobrarte.
¿Puedo convertir múltiples archivos a la vez?
¡Sí! Puedes convertir tantos archivos como quieras a la vez. Sólo selecciona múltiples archivos cuando los agregues.