OCR 任何FITS

拖放照片、掃描件或 PDF(最大 2.5GB)。我們直接在您的瀏覽器中提取文字 — 免費、無限制,您的檔案絕不會離開您的裝置。

私密與安全

一切都在您的瀏覽器中進行。您的檔案絕不接觸我們的伺服器。

極速

無需上傳,無需等待。在您拖放檔案的瞬間即可轉換。

完全免費

無需帳戶。無隱藏費用。無檔案大小限制花招。

光學字元辨識(OCR)將文字影像—掃描、智慧型手機相片、PDF—轉換為機器可讀的字串,並且越來越多地轉換為 結構化資料。現代 OCR 是一個清理影像、尋找文字、讀取它並匯出豐富元數據的流程, 以便下游系統可以搜尋、索引或擷取欄位。兩個廣泛使用的輸出標準是 hOCR,一種用於文字和版面的 HTML 微格式,以及 ALTO XML,一種以圖書館/檔案館為導向的綱要;兩者都保留位置、閱讀順序和其他版面提示,並受到 像 Tesseract這樣的熱門引擎支援。

流程快速導覽

預處理。 OCR 品質始於影像清理:灰階轉換、去噪、 二值化(二值化)和歪斜校正。標準的 OpenCV 教學涵蓋了全域、 自適應 Otsu 二值化—適用於光線不均或雙峰直方圖的文件的必備步驟。當頁面內的光線變化時 (想想手機快照),自適應方法通常優於單一全域閾值;Otsu 會透過分析直方圖自動選擇一個閾值。傾斜校正同樣重要:基於霍夫變換的 歪斜校正(霍夫線變換)與 Otsu 二值化結合,是生產預處理流程中常見且有效的方案。

偵測與辨識。 OCR 通常分為文字偵測(文字在哪裡 ?)和文字辨識(它說什麼?)。在自然場景和許多掃描中,完全卷積 偵測器,如 EAST ,可以有效地預測字或行級的四邊形,而無需繁重的提案階段,並且已在 常見的工具套件中實現(例如, OpenCV 的文字偵測教學)。在複雜的頁面(報紙、表格、書籍)上,行/區域的分割和閱讀順序推斷很重要:Kraken 實現了傳統的區域/行分割和神經基準線分割,並明確支援 不同的腳本和方向(LTR/RTL/垂直)。

辨識模型。 經典的開源主力 Tesseract (由 Google 開源,源於 HP)從字元分類器演變為基於 LSTM 的序列 辨識器,可以從 CLI 發出可搜尋的 PDF、 hOCR/ALTO 相容輸出等。現代辨識器依賴於序列模型,而無需預先分割的字元。 連接主義時間分類 (CTC) 仍然是基礎,它學習輸入特徵序列和輸出標籤字串之間的對齊;它廣泛 用於手寫和場景文字流程。

在過去幾年中,Transformer 重塑了 OCR。 TrOCR 使用視覺 Transformer 編碼器和文字 Transformer 解碼器,在大型合成語料庫上進行訓練,然後 在真實資料上進行微調,在印刷、手寫和場景文字基準測試中表現出色(另請參閱 Hugging Face 文件)。與此同時,一些系統繞過 OCR 進行下游理解: Donut(文件理解 Transformer) 是一種無 OCR 的編碼器-解碼器,可直接從文件 影像輸出結構化答案(如鍵值 JSON)(儲存庫 模型卡),避免了在單獨的 OCR 步驟為 IE 系統提供資料時出現錯誤累積。

引擎和函式庫

如果您想要跨多種腳本的「開箱即用」文字閱讀, EasyOCR 提供了一個包含 80 多種語言模型的簡單 API,可傳回框、文字和可信度—方便用於原型和 非拉丁腳本。對於歷史文獻, Kraken 以基準線分割和腳本感知閱讀順序而著稱;對於靈活的行級訓練, Calamari 建立在 Ocropy 的基礎上(Ocropy),帶有(多)LSTM+CTC 辨識器和用於微調自訂模型的 CLI。

資料集和基準

泛化取決於資料。對於手寫, IAM 手寫資料庫 為訓練和評估提供了不同作者的英文句子;它是 行和字辨識的長期參考集。對於場景文字, COCO-Text 在 MS-COCO 上分層了廣泛的註釋,帶有印刷/手寫、清晰/不清晰、腳本和 完整轉錄的標籤(另請參閱原始 專案頁面)。該領域也嚴重依賴合成預訓練: 野外合成文字 將文字渲染到具有逼真幾何和光線的相片中,為預訓練 偵測器和辨識器提供大量資料(參考 程式碼和資料)。

ICDAR 的穩健閱讀 下的競賽使評估保持務實。最近的任務強調端對端偵測/閱讀,並包括將字 連結成片語,官方程式碼報告 精確率/召回率/F-score、交並比 (IoU) 和字元級編輯距離度量—反映了從業人員應該追蹤的內容。

輸出格式和下游使用

OCR 很少以純文字結尾。檔案館和數位圖書館更喜歡 ALTO XML ,因為它除了內容之外還編碼了實體版面(帶座標的區塊/行/字),並且它與 METS 打包配合得很好。 hOCR 微格式則相反,它使用 ocr_line ocrx_word 等類別將相同的思想嵌入到 HTML/CSS 中,從而可以輕鬆地使用 Web 工具進行顯示、編輯和轉換。Tesseract 兩者都支援—例如, 直接從 CLI 產生 hOCR 或可搜尋的 PDF(PDF 輸出指南);像 pytesseract 這樣的 Python 包裝函式增加了便利性。當儲存庫具有固定的接收 標準時,存在用於在 hOCR 和 ALTO 之間進行轉換的轉換器—請參閱此精選清單 OCR 檔案格式工具

實用指南

  • 從資料和清潔度開始。 如果您的影像是手機相片或品質參差不齊的掃描件, 請在進行任何模型調整之前投資於二值化(自適應和 Otsu)和歪斜校正(Hough)。您通常會從強大的預處理方案中獲益更多,而不是更換 辨識器。
  • 選擇正確的偵測器。 對於具有規則欄的掃描頁面,頁面分割器(區域 → 行)可能就足夠了;對於自然影像,像 EAST 這樣的單次偵測器是強大的基準,可以插入許多工具套件(OpenCV 範例)。
  • 選擇與您的文字相符的辨識器。 對於印刷體拉丁文, Tesseract (LSTM/OEM) 堅固而快速;對於多腳本或快速原型, EasyOCR 是高效的;對於手寫或歷史字體,請考慮 Kraken Calamari 並計劃进行微調。如果您需要與文件理解(鍵值擷取、VQA)緊密耦合, 請在您的綱要上評估 TrOCR (OCR) 與 Donut (無 OCR)—Donut 可能會移除整個整合步驟。
  • 衡量重要指標。 對於端對端系統,報告偵測 F-score 和辨識 CER/WER(均基於 Levenshtein 編輯距離;請參閱 CTC);對於版面繁重的任務,請追蹤 IoU/緊密度和字元級歸一化編輯距離,如 ICDAR RRC 評估工具套件中所示。
  • 匯出豐富輸出。 首選 hOCR /ALTO (或兩者),以便保留座標和閱讀順序—這對於搜尋結果高亮、表格/欄位 擷取和來源至關重要。Tesseract 的 CLI 和 pytesseract 使其成為一行程式碼即可完成的操作。

展望未來

最強勁的趨勢是融合:偵測、辨識、語言模型,甚至特定於任務的解碼 正在合併到統一的 Transformer 堆疊中。在 大型合成語料庫 上進行預訓練仍然是一個力量倍增器。無 OCR 模型將在目標是結構化輸出 而不是逐字記錄的任何地方積極競爭。也期待混合部署:一個輕量級偵測器加上一個 TrOCR 風格的 辨識器用於長格式文字,以及一個 Donut 風格的模型用於表格和收據。

進一步閱讀和工具

Tesseract (GitHub) · Tesseract 文件 · hOCR 規範 · ALTO 背景 · EAST 偵測器 · OpenCV 文字偵測 · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · IAM 手寫 · OCR 檔案格式工具 · EasyOCR

常見問題

什麼是OCR?

光學字符識別(OCR)是一種技術,用於將不同類型的文檔,如掃描的紙質文檔、PDF文件或由數字相機拍攝的圖像,轉換為可以編輯和可搜索的數據。

OCR如何工作?

OCR通過掃描輸入的圖像或文檔,將圖像分割成單個字符,然後將每個字符與使用模式識別或特徵識別的字符形狀數據庫進行比較。

OCR有些什麼實際應用?

OCR用於各種行業和應用,包括數字化打印文件、啟用文字轉語音服務、自動化數據錄入過程,以及幫助視障用戶更好地與文字互動。

OCR總是100%準確的嗎?

儘管OCR技術已取得了巨大的進步,但它並不是絕對可靠的。準確性可能會因原始文檔的質量和使用的OCR軟件的具體情況而異。

OCR可以識別手寫字嗎?

儘管OCR主要用於識別印刷文字,但一些先進的OCR系統也能識別清晰、一致的手寫。然而,通常由於個人寫作風格的多樣性,手寫識別的準確度較低。

OCR可以處理多種語言嗎?

是的,許多OCR軟件可以識別多種語言。但是,需要確保你使用的軟件支持特定的語言。

OCR和ICR有何區別?

OCR是光學字符識別的縮寫,用於識別印刷的文字,而ICR,或稱為智能字符識別,則較為先進,用於識別手寫的文字。

OCR能處理所有字體和文字大小嗎?

OCR在處理清晰易讀的字體和標準文字大小上效果最佳。雖然它能識別各種字體和大小,但在處理不常見的字體或極小的文字大小時,其準確性可能會降低。

OCR技術有哪些限制?

OCR在處理低分辨率的文件、複雜的字體、打印質量差的文字、手寫,以及字和背景迎合度不足的文件時可能出問題。另外,儘管它可以識別多種語言,但可能無法完美覆蓋所有語言。

OCR可以掃描彩色文字或彩色背景嗎?

是的,OCR可以掃瞄彩色文字和背景,雖然它對高對比度的顏色組合,如黑色文字和白色背景效果更好。如果文字和背景的顏色對比度不足,其準確性可能會降低。

什麼是 FITS 格式?

靈活的圖像傳輸系統

彈性影像傳輸系統 (FITS) 格式是一種開放標準,定義一種數位檔案格式,可用於儲存、傳輸和處理科學和其他影像。FITS 是天文學中最常用的數位檔案格式。與許多專為特定類型影像或裝置設計的影像格式不同,FITS 被設計為具有彈性,允許它在單一檔案中儲存許多類型的科學資料,包括影像、光譜和表格。這種多功能性使 FITS 不僅是一種影像格式,更是一種強大的科學資料儲存工具。

FITS 最初是由天文學家和電腦科學家在 1970 年代後期開發,他們需要一種標準化的資料格式來進行資料交換和儲存,FITS 被設計為自文件化、與機器無關,且易於擴充以滿足未來的需求。這些基本原則讓 FITS 能夠在數十年的技術進步中進行調整,同時保持向後相容性,確保數十年前儲存在 FITS 格式中的資料仍然可以在今天存取和理解。

FITS 檔案由一個或多個「標頭資料單元」(HDU) 組成,其中每個 HDU 都包含一個標頭和一個資料區段。標頭包含一系列人類可讀的 ASCII 文字行,每一行都描述下一個區段中資料的一個面向,例如其格式、大小和其他背景資訊。這種自文件化功能是 FITS 格式的一項重大優點,因為它將資料的背景直接嵌入資料本身旁邊,使 FITS 檔案更易於理解和使用。

HDU 的資料區段可以包含各種資料類型,包括陣列(例如影像)、表格,甚至更複雜的結構。FITS 支援多種資料類型,例如整數和浮點數,具有不同的精度等級。這允許儲存具有高位元深度原始觀測資料,這對於科學分析和在處理和分析步驟中保留資料的完整性至關重要。

FITS 的關鍵功能之一是它支援 N 維陣列。雖然二維 (2D) 陣列通常用於影像資料,但 FITS 可以容納任何維度的陣列,使其適用於超出簡單影像的廣泛科學資料。例如,三維 (3D) FITS 檔案可能會將一組相關的 2D 影像儲存在第三維度的不同平面中,或者它可以直接儲存體積資料。

FITS 也以其廣泛儲存元資料的能力而聞名。每個 HDU 的標頭都可以包含「關鍵字」,提供資料的詳細描述,包括觀測時間和日期、觀測儀器規格、資料處理記錄等等。這種廣泛的元資料功能使 FITS 檔案不僅是資料容器,更是產生它們的科學觀測和過程的全面記錄。

FITS 標準包含針對不同類型資料的特定慣例和擴充功能。例如,「二進位表格」擴充功能允許在 FITS 檔案中有效率地儲存表格資料,包括異質資料類型的列。另一個重要的擴充功能是「世界座標系統」(WCS),它提供一種標準化方式來定義與天文資料相關的空間(有時是時間)座標。FITS 標頭中的 WCS 關鍵字允許將影像像素精確對應到天球座標,這對於天文學研究至關重要。

為了確保互通性和資料完整性,FITS 標準由正式定義管理,並由 FITS 工作小組持續更新,該小組由天文學、電腦和資料科學方面的國際專家組成。該標準由國際天文學聯合會 (IAU) 監督,確保 FITS 仍然是天文資料的全球標準。

雖然 FITS 被設計為自文件化和可擴充,但它並非沒有其複雜性。FITS 檔案的彈性結構意味著讀取或寫入 FITS 資料的軟體必須能夠處理各種格式和資料類型。此外,大量的可能元資料及其使用的複雜慣例可能會為那些剛開始使用 FITS 檔案的人帶來陡峭的學習曲線。

儘管有這些挑戰,FITS 格式的廣泛採用以及跨不同程式語言的大量函式庫和工具,使 FITS 資料的使用對廣大受眾來說變得容易。CFITSIO(使用 C)和 Astropy(使用 Python)等函式庫提供了用於讀取、寫入和處理 FITS 檔案的全面功能,進一步促進了該格式在科學運算和研究中的使用。

FITS 的廣泛使用以及可用的廣泛函式庫和工具,培養了一個充滿活力的使用者和開發人員社群,為 FITS 標準和相關軟體的持續改進和更新做出貢獻。這種社群驅動的開發確保 FITS 保持相關性,並能夠滿足科學研究不斷變化的需求。

近年來 FITS 格式更具創新的用途之一是在天文學中的高性能運算 (HPC) 和大資料分析領域。隨著望遠鏡和感測器的功能越來越強大,天文資料的數量也爆炸性地增加。FITS 已適應這些變化,開發了新的工具和函式庫來有效處理增加的資料量,使其成為主要天文調查資料處理管線中的關鍵組成部分。

FITS 格式儲存和組織具有廣泛元資料的複雜多維資料的能力,也讓它在天文領域以外找到了應用。醫學影像、地球科學甚至數位保存等領域都採用 FITS 來滿足各種資料儲存需求,受益於其強健性、彈性和自文件化特性。這種廣泛的適用性證明了該格式基本原則的強大性。

展望未來,FITS 格式的持續演進可能會受到新興科學領域的需求和數位資料持續爆炸的影響。在資料壓縮、改進對複雜資料結構的支援,甚至更先進的元資料功能等領域的增強,可能會進一步擴展 FITS 的效用。FITS 標準的開放性和可擴充性,加上其強有力的治理和充滿活力的社群,使其能夠很好地應對這些未來的挑戰。

總之,彈性影像傳輸系統 (FITS) 格式代表了科學資料儲存的基石,特別是在天文學中。FITS 以彈性、自文件化和可擴充的原則為核心設計,已成功適應了超過四十年來運算和資料科學的進步。它能夠儲存各種類型的資料,從簡單的影像到具有廣泛元資料的複雜多維資料集,這使 FITS 成為科學社群獨特強大的工具。隨著技術的持續發展,FITS 格式在使用者和開發人員的全球社群支援下,將有望繼續成為天文學及其他領域研究和資料管理的重要資產。

支援的格式

AAI.aai

AAI 沙漠圖像

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 圖像文件格式

BAYER.bayer

原始 Bayer 圖像

BMP.bmp

Microsoft Windows 點陣圖像

CIN.cin

Cineon 圖像文件

CLIP.clip

圖像剪輯遮罩

CMYK.cmyk

原始青色,洋紅色,黃色和黑色樣本

CUR.cur

Microsoft 圖標

DCX.dcx

ZSoft IBM PC 多頁畫筆

DDS.dds

Microsoft DirectDraw 表面

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) 圖像

DXT1.dxt1

Microsoft DirectDraw 表面

EPDF.epdf

封裝式可攜式文件格式

EPI.epi

Adobe 封裝式 PostScript 交換格式

EPS.eps

Adobe 封裝式 PostScript

EPSF.epsf

Adobe 封裝式 PostScript

EPSI.epsi

Adobe 封裝式 PostScript 交換格式

EPT.ept

帶有 TIFF 預覽的封裝式 PostScript

EPT2.ept2

帶有 TIFF 預覽的封裝式 PostScript Level II

EXR.exr

高人眼動態範圍圖像

FF.ff

Farbfeld

FITS.fits

靈活的圖像傳輸系統

GIF.gif

CompuServe 圖形交換格式

HDR.hdr

高動態範圍圖像

HEIC.heic

高效圖像容器

HRZ.hrz

緩慢掃描電視

ICO.ico

Microsoft 圖標

ICON.icon

Microsoft 圖標

J2C.j2c

JPEG-2000 編碼串

J2K.j2k

JPEG-2000 編碼串

JNG.jng

JPEG 網絡圖形

JP2.jp2

JPEG-2000 文件格式語法

JPE.jpe

聯合攝影專家組 JFIF 格式

JPEG.jpeg

聯合攝影專家組 JFIF 格式

JPG.jpg

聯合攝影專家組 JFIF 格式

JPM.jpm

JPEG-2000 文件格式語法

JPS.jps

聯合攝影專家組 JPS 格式

JPT.jpt

JPEG-2000 文件格式語法

JXL.jxl

JPEG XL 圖像

MAP.map

多解析度無縫圖像數據庫 (MrSID)

MAT.mat

MATLAB 等級 5 圖像格式

PAL.pal

棕櫚點陣圖

PALM.palm

棕櫚點陣圖

PAM.pam

通用二維位圖格式

PBM.pbm

可攜式位圖格式(黑白)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

棕櫚數據庫圖像查看器格式

PDF.pdf

可攜式文件格式

PDFA.pdfa

可攜式文檔檔案格式

PFM.pfm

可攜式浮點格式

PGM.pgm

可攜式灰度圖格式

PGX.pgx

JPEG-2000 VM 格式

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

聯合照相專家組 JFIF 格式(進行中)

PNG.png

可攜式網路圖形格式

PNG00.png00

與原始圖像相同的 PNG 圖像

PNG24.png24

透明背景的 24 位 RGB PNG 圖像

PNG32.png32

帶有透明度通道的 32 位 RGBA PNG 圖像

PNG48.png48

48 位 RGB PNG 圖像

PNG64.png64

帶有透明度通道的 64 位 RGBA PNG 圖像

PNG8.png8

8位的 PNG 圖像

PNM.pnm

可攜式任何圖像格式

PPM.ppm

可攜式像素圖格式(彩色)

PS.ps

Adobe PostScript

PSB.psb

Photoshop大型檔案格式

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

原始紅色,綠色和藍色樣本

RGBA.rgba

原始紅色,綠色,藍色和 Alpha 樣本

RGBO.rgbo

原始紅色,綠色,藍色和不透明度樣本

SIX.six

DEC SIXEL 圖像格式

SUN.sun

SUN 飽和圖像

SVG.svg

可縮放矢量圖形

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision Targa 圖像

VIPS.vips

VIPS圖像

WBMP.wbmp

無線點陣圖像

WEBP.webp

WebP圖像格式

YUV.yuv

CCIR 601 4:1:1 或 4:2:2

常見問題

這是如何運作的?

這個轉換器完全在您的瀏覽器中運行。當您選擇 一個檔案,它將讀入內存並轉換為所選格式。 然後,您可以下載轉換後的檔案。

轉換一個檔案需要多久?

轉換馬上開始,大部分檔案僅需一秒鐘轉換。 較大的檔案可能需要更長的時間。

我的檔案會發生什麼?

您的檔案絕不會上傳到我們的伺服器。它們在您的瀏覽器中 轉換,然後下載轉換後的檔案。我們從未看到您的檔案。

我可以轉換哪種類型的檔案?

我們支援所有圖形格式之間的轉換,包括 JPEG,PNG,GIF,WebP,SVG,BMP,TIFF,等等。

這需要多少費用?

此轉換器完全免費,且將永遠免費。 由於它在您的瀏覽器中運行,我們無需支付 伺服器費用,所以我們不需要向您收取費用。

我可以一次轉換多個檔案嗎?

可以!您一次可以轉換任意多的檔案。 當您添加檔案時,只需選擇多個檔案即可。