OCR 任何EXR

拖放照片、掃描件或 PDF(最大 2.5GB)。我們直接在您的瀏覽器中提取文字 — 免費、無限制,您的檔案絕不會離開您的裝置。

私密與安全

一切都在您的瀏覽器中進行。您的檔案絕不接觸我們的伺服器。

極速

無需上傳,無需等待。在您拖放檔案的瞬間即可轉換。

完全免費

無需帳戶。無隱藏費用。無檔案大小限制花招。

光學字元辨識(OCR)將文字影像—掃描、智慧型手機相片、PDF—轉換為機器可讀的字串,並且越來越多地轉換為 結構化資料。現代 OCR 是一個清理影像、尋找文字、讀取它並匯出豐富元數據的流程, 以便下游系統可以搜尋、索引或擷取欄位。兩個廣泛使用的輸出標準是 hOCR,一種用於文字和版面的 HTML 微格式,以及 ALTO XML,一種以圖書館/檔案館為導向的綱要;兩者都保留位置、閱讀順序和其他版面提示,並受到 像 Tesseract這樣的熱門引擎支援。

流程快速導覽

預處理。 OCR 品質始於影像清理:灰階轉換、去噪、 二值化(二值化)和歪斜校正。標準的 OpenCV 教學涵蓋了全域、 自適應 Otsu 二值化—適用於光線不均或雙峰直方圖的文件的必備步驟。當頁面內的光線變化時 (想想手機快照),自適應方法通常優於單一全域閾值;Otsu 會透過分析直方圖自動選擇一個閾值。傾斜校正同樣重要:基於霍夫變換的 歪斜校正(霍夫線變換)與 Otsu 二值化結合,是生產預處理流程中常見且有效的方案。

偵測與辨識。 OCR 通常分為文字偵測(文字在哪裡 ?)和文字辨識(它說什麼?)。在自然場景和許多掃描中,完全卷積 偵測器,如 EAST ,可以有效地預測字或行級的四邊形,而無需繁重的提案階段,並且已在 常見的工具套件中實現(例如, OpenCV 的文字偵測教學)。在複雜的頁面(報紙、表格、書籍)上,行/區域的分割和閱讀順序推斷很重要:Kraken 實現了傳統的區域/行分割和神經基準線分割,並明確支援 不同的腳本和方向(LTR/RTL/垂直)。

辨識模型。 經典的開源主力 Tesseract (由 Google 開源,源於 HP)從字元分類器演變為基於 LSTM 的序列 辨識器,可以從 CLI 發出可搜尋的 PDF、 hOCR/ALTO 相容輸出等。現代辨識器依賴於序列模型,而無需預先分割的字元。 連接主義時間分類 (CTC) 仍然是基礎,它學習輸入特徵序列和輸出標籤字串之間的對齊;它廣泛 用於手寫和場景文字流程。

在過去幾年中,Transformer 重塑了 OCR。 TrOCR 使用視覺 Transformer 編碼器和文字 Transformer 解碼器,在大型合成語料庫上進行訓練,然後 在真實資料上進行微調,在印刷、手寫和場景文字基準測試中表現出色(另請參閱 Hugging Face 文件)。與此同時,一些系統繞過 OCR 進行下游理解: Donut(文件理解 Transformer) 是一種無 OCR 的編碼器-解碼器,可直接從文件 影像輸出結構化答案(如鍵值 JSON)(儲存庫 模型卡),避免了在單獨的 OCR 步驟為 IE 系統提供資料時出現錯誤累積。

引擎和函式庫

如果您想要跨多種腳本的「開箱即用」文字閱讀, EasyOCR 提供了一個包含 80 多種語言模型的簡單 API,可傳回框、文字和可信度—方便用於原型和 非拉丁腳本。對於歷史文獻, Kraken 以基準線分割和腳本感知閱讀順序而著稱;對於靈活的行級訓練, Calamari 建立在 Ocropy 的基礎上(Ocropy),帶有(多)LSTM+CTC 辨識器和用於微調自訂模型的 CLI。

資料集和基準

泛化取決於資料。對於手寫, IAM 手寫資料庫 為訓練和評估提供了不同作者的英文句子;它是 行和字辨識的長期參考集。對於場景文字, COCO-Text 在 MS-COCO 上分層了廣泛的註釋,帶有印刷/手寫、清晰/不清晰、腳本和 完整轉錄的標籤(另請參閱原始 專案頁面)。該領域也嚴重依賴合成預訓練: 野外合成文字 將文字渲染到具有逼真幾何和光線的相片中,為預訓練 偵測器和辨識器提供大量資料(參考 程式碼和資料)。

ICDAR 的穩健閱讀 下的競賽使評估保持務實。最近的任務強調端對端偵測/閱讀,並包括將字 連結成片語,官方程式碼報告 精確率/召回率/F-score、交並比 (IoU) 和字元級編輯距離度量—反映了從業人員應該追蹤的內容。

輸出格式和下游使用

OCR 很少以純文字結尾。檔案館和數位圖書館更喜歡 ALTO XML ,因為它除了內容之外還編碼了實體版面(帶座標的區塊/行/字),並且它與 METS 打包配合得很好。 hOCR 微格式則相反,它使用 ocr_line ocrx_word 等類別將相同的思想嵌入到 HTML/CSS 中,從而可以輕鬆地使用 Web 工具進行顯示、編輯和轉換。Tesseract 兩者都支援—例如, 直接從 CLI 產生 hOCR 或可搜尋的 PDF(PDF 輸出指南);像 pytesseract 這樣的 Python 包裝函式增加了便利性。當儲存庫具有固定的接收 標準時,存在用於在 hOCR 和 ALTO 之間進行轉換的轉換器—請參閱此精選清單 OCR 檔案格式工具

實用指南

  • 從資料和清潔度開始。 如果您的影像是手機相片或品質參差不齊的掃描件, 請在進行任何模型調整之前投資於二值化(自適應和 Otsu)和歪斜校正(Hough)。您通常會從強大的預處理方案中獲益更多,而不是更換 辨識器。
  • 選擇正確的偵測器。 對於具有規則欄的掃描頁面,頁面分割器(區域 → 行)可能就足夠了;對於自然影像,像 EAST 這樣的單次偵測器是強大的基準,可以插入許多工具套件(OpenCV 範例)。
  • 選擇與您的文字相符的辨識器。 對於印刷體拉丁文, Tesseract (LSTM/OEM) 堅固而快速;對於多腳本或快速原型, EasyOCR 是高效的;對於手寫或歷史字體,請考慮 Kraken Calamari 並計劃进行微調。如果您需要與文件理解(鍵值擷取、VQA)緊密耦合, 請在您的綱要上評估 TrOCR (OCR) 與 Donut (無 OCR)—Donut 可能會移除整個整合步驟。
  • 衡量重要指標。 對於端對端系統,報告偵測 F-score 和辨識 CER/WER(均基於 Levenshtein 編輯距離;請參閱 CTC);對於版面繁重的任務,請追蹤 IoU/緊密度和字元級歸一化編輯距離,如 ICDAR RRC 評估工具套件中所示。
  • 匯出豐富輸出。 首選 hOCR /ALTO (或兩者),以便保留座標和閱讀順序—這對於搜尋結果高亮、表格/欄位 擷取和來源至關重要。Tesseract 的 CLI 和 pytesseract 使其成為一行程式碼即可完成的操作。

展望未來

最強勁的趨勢是融合:偵測、辨識、語言模型,甚至特定於任務的解碼 正在合併到統一的 Transformer 堆疊中。在 大型合成語料庫 上進行預訓練仍然是一個力量倍增器。無 OCR 模型將在目標是結構化輸出 而不是逐字記錄的任何地方積極競爭。也期待混合部署:一個輕量級偵測器加上一個 TrOCR 風格的 辨識器用於長格式文字,以及一個 Donut 風格的模型用於表格和收據。

進一步閱讀和工具

Tesseract (GitHub) · Tesseract 文件 · hOCR 規範 · ALTO 背景 · EAST 偵測器 · OpenCV 文字偵測 · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · IAM 手寫 · OCR 檔案格式工具 · EasyOCR

常見問題

什麼是OCR?

光學字符識別(OCR)是一種技術,用於將不同類型的文檔,如掃描的紙質文檔、PDF文件或由數字相機拍攝的圖像,轉換為可以編輯和可搜索的數據。

OCR如何工作?

OCR通過掃描輸入的圖像或文檔,將圖像分割成單個字符,然後將每個字符與使用模式識別或特徵識別的字符形狀數據庫進行比較。

OCR有些什麼實際應用?

OCR用於各種行業和應用,包括數字化打印文件、啟用文字轉語音服務、自動化數據錄入過程,以及幫助視障用戶更好地與文字互動。

OCR總是100%準確的嗎?

儘管OCR技術已取得了巨大的進步,但它並不是絕對可靠的。準確性可能會因原始文檔的質量和使用的OCR軟件的具體情況而異。

OCR可以識別手寫字嗎?

儘管OCR主要用於識別印刷文字,但一些先進的OCR系統也能識別清晰、一致的手寫。然而,通常由於個人寫作風格的多樣性,手寫識別的準確度較低。

OCR可以處理多種語言嗎?

是的,許多OCR軟件可以識別多種語言。但是,需要確保你使用的軟件支持特定的語言。

OCR和ICR有何區別?

OCR是光學字符識別的縮寫,用於識別印刷的文字,而ICR,或稱為智能字符識別,則較為先進,用於識別手寫的文字。

OCR能處理所有字體和文字大小嗎?

OCR在處理清晰易讀的字體和標準文字大小上效果最佳。雖然它能識別各種字體和大小,但在處理不常見的字體或極小的文字大小時,其準確性可能會降低。

OCR技術有哪些限制?

OCR在處理低分辨率的文件、複雜的字體、打印質量差的文字、手寫,以及字和背景迎合度不足的文件時可能出問題。另外,儘管它可以識別多種語言,但可能無法完美覆蓋所有語言。

OCR可以掃描彩色文字或彩色背景嗎?

是的,OCR可以掃瞄彩色文字和背景,雖然它對高對比度的顏色組合,如黑色文字和白色背景效果更好。如果文字和背景的顏色對比度不足,其準確性可能會降低。

什麼是 EXR 格式?

高人眼動態範圍圖像

擴展範圍 (EXR) 檔案格式是一種高動態範圍影像檔案格式,由工業光魔 (ILM) 於 2003 年開發並發布。它專門設計用於促進動態影像畫面和靜態影像的數位儲存,這些影像需要高動態範圍和廣色域。EXR 的開發是受到影像儲存中對更高精確度和彈性的需求所驅動,讓視覺效果藝術家和數位電影攝影師能夠使用更接近真實世界光線和色彩條件的影像,從而克服標準影像格式所帶來的限制。

EXR 檔案能夠以各種精確度等級儲存影像資料,包括 16 位元浮點數、32 位元浮點數和 32 位元整數像素格式。這種彈性讓 EXR 檔案能夠精確表示非常廣泛的強度範圍,從最暗的陰影到最亮的亮部,遠遠超出標準 8 位元甚至 16 位元影像格式所能提供的範圍。此功能在視覺效果產業中特別重要,因為準確捕捉光線和陰影的細微差別會對最終輸出的真實感和沉浸感產生重大影響。

EXR 格式的另一個顯著特點是它支援多種壓縮技術,這有助於管理檔案大小,同時不會顯著損害影像品質。在支援的壓縮架構中包括 Zip、Piz、PXR24、B44、B44A 和無 (未壓縮)。每種壓縮方法都有其使用案例,可以在檔案大小、影像品質和壓縮與解壓縮所需的運算資源之間取得平衡。這種彈性讓 EXR 檔案能夠適應各種工作流程和儲存或頻寬限制。

EXR 檔案的一個關鍵特徵是它們支援多部分和深度影像格式。多部分影像允許場景的不同元素(例如背景層、前景物件或不同類型的視覺效果)儲存在單一 EXR 檔案內的不同部分。每個部分都可以有自己的元資料,例如屬性或註解,這使得 EXR 格式對於複雜的視覺效果工作流程特別靈活。另一方面,深度影像格式會儲存像素值以及每個範例的深度資訊,提供將 3D 渲染場景與複雜細節和真實感合成在一起的能力。

EXR 檔案在支援標準 RGB(紅、綠、藍)色彩模型之外的任意通道方面也表現出色。這表示除了儲存色彩資訊之外,EXR 檔案還可以容納各種其他類型的資料,例如用於透明度的 alpha 通道、用於距離計算的 Z 深度,甚至用於特定使用案例的客製化通道。此功能對於進階合成和視覺效果建立來說不可或缺,因為它允許根據超越單純色彩的屬性對影像元素進行高度細微的處理。

此格式的設計也強調可擴充性和未來性。EXR 檔案包含一個儲存影像元資料(例如解析度、像素長寬比、通道數等)的標頭區段。此外,標頭可以包含應用程式或使用者新增的客製化屬性,讓擴充格式功能或嵌入專案特定資訊變得容易。EXR 格式的這種開放性質確保它能夠演進以滿足影像處理和視覺效果中新興的需求。

儘管有這些進階功能,但使用 EXR 檔案的複雜性可能是一把雙面刃。此格式的彈性和廣泛功能意味著需要專業軟體和對格式潛力和陷阱的良好理解,才能充分利用它。受業界歡迎的標準軟體解決方案,例如 Adobe Photoshop、Nuke 和 Autodesk Maya,都支援 EXR 格式,但充分利用其所有功能通常需要比使用較簡單的影像格式更深入的知識。

EXR 格式在處理高動態範圍和廣色域內容方面的強健性,使其特別適合涉及高動態範圍 (HDR) 影像的現代工作流程。隨著顯示技術持續演進,HDR 在消費性和專業市場中變得越來越普遍,像 EXR 這樣能夠準確捕捉和儲存高保真影像資料的格式的重要性持續增加。這使得 EXR 不僅與電影和電視的內容建立相關,也與虛擬實境、電子遊戲和任何影像品質和真實感至上的數位內容應用程式相關。

EXR 格式的一個引人注目的優點是它的開源性質。此格式最初由 ILM 開發,其規格和相關函式庫(例如 OpenEXR)都是免費提供的,鼓勵廣泛採用並整合到各種軟體工具和平台中。開源方法也促進了社群驅動的開發和改進,確保此格式保持相關性並持續滿足不斷演進的數位影像環境的需求。例如,OpenEXR 函式庫提供了一套全面的工具,用於讀取、寫入和處理 EXR 檔案,讓開發人員能夠將 EXR 支援整合到他們的應用程式中。

EXR 的技術規格,加上它在業界標準軟體中的採用和開源社群的支持,已鞏固了它在數位內容建立流程中作為關鍵工具的地位。從劇情片到電視製作等等,EXR 啟用了一種影像保真度和創意彈性,這是其他格式難以達到的。它處理複雜的多層合成和儲存廣泛亮度值的能力,使其成為視覺效果藝術家、電影攝影師和數位內容建立者在作品中追求最高品質和真實感的不可或缺的格式。

展望未來,EXR 格式及其生態系統的演進可能會持續回應數位影像產業不斷變化的需求。新壓縮演算法的持續開發、資料處理和處理的增強,以及元資料管理的改進,都是 EXR 格式可以進一步進步的領域。此外,隨著朝向更具沉浸感和互動性的媒體格式邁進,EXR 儲存和管理複雜的多維資料集的能力,使其成為非常適合未來技術(例如擴增實境 (AR) 和虛擬實境 (VR) 內容建立)的格式。

總之,擴展範圍 (EXR) 影像格式代表了數位影像技術的重大進步,提供了遠遠超越傳統影像格式的工具和功能。它的開發反映了產業中更廣泛的趨勢,朝向建立更逼真和身歷其境的視覺內容,其中捕捉真實世界中看到的完整光線和色彩範圍變得越來越重要。透過其高精確度、對各種資料類型的支援,以及處理複雜影像合成的彈性,EXR 為數位影像中可能達到的目標設定了很高的標準。隨著技術進步和對高品質、高保真影像的需求持續增加,EXR 格式在數位影像和內容建立生態系統中作為樞紐工具的角色可能會進一步穩固。

支援的格式

AAI.aai

AAI 沙漠圖像

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 圖像文件格式

BAYER.bayer

原始 Bayer 圖像

BMP.bmp

Microsoft Windows 點陣圖像

CIN.cin

Cineon 圖像文件

CLIP.clip

圖像剪輯遮罩

CMYK.cmyk

原始青色,洋紅色,黃色和黑色樣本

CUR.cur

Microsoft 圖標

DCX.dcx

ZSoft IBM PC 多頁畫筆

DDS.dds

Microsoft DirectDraw 表面

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) 圖像

DXT1.dxt1

Microsoft DirectDraw 表面

EPDF.epdf

封裝式可攜式文件格式

EPI.epi

Adobe 封裝式 PostScript 交換格式

EPS.eps

Adobe 封裝式 PostScript

EPSF.epsf

Adobe 封裝式 PostScript

EPSI.epsi

Adobe 封裝式 PostScript 交換格式

EPT.ept

帶有 TIFF 預覽的封裝式 PostScript

EPT2.ept2

帶有 TIFF 預覽的封裝式 PostScript Level II

EXR.exr

高人眼動態範圍圖像

FF.ff

Farbfeld

FITS.fits

靈活的圖像傳輸系統

GIF.gif

CompuServe 圖形交換格式

HDR.hdr

高動態範圍圖像

HEIC.heic

高效圖像容器

HRZ.hrz

緩慢掃描電視

ICO.ico

Microsoft 圖標

ICON.icon

Microsoft 圖標

J2C.j2c

JPEG-2000 編碼串

J2K.j2k

JPEG-2000 編碼串

JNG.jng

JPEG 網絡圖形

JP2.jp2

JPEG-2000 文件格式語法

JPE.jpe

聯合攝影專家組 JFIF 格式

JPEG.jpeg

聯合攝影專家組 JFIF 格式

JPG.jpg

聯合攝影專家組 JFIF 格式

JPM.jpm

JPEG-2000 文件格式語法

JPS.jps

聯合攝影專家組 JPS 格式

JPT.jpt

JPEG-2000 文件格式語法

JXL.jxl

JPEG XL 圖像

MAP.map

多解析度無縫圖像數據庫 (MrSID)

MAT.mat

MATLAB 等級 5 圖像格式

PAL.pal

棕櫚點陣圖

PALM.palm

棕櫚點陣圖

PAM.pam

通用二維位圖格式

PBM.pbm

可攜式位圖格式(黑白)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

棕櫚數據庫圖像查看器格式

PDF.pdf

可攜式文件格式

PDFA.pdfa

可攜式文檔檔案格式

PFM.pfm

可攜式浮點格式

PGM.pgm

可攜式灰度圖格式

PGX.pgx

JPEG-2000 VM 格式

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

聯合照相專家組 JFIF 格式(進行中)

PNG.png

可攜式網路圖形格式

PNG00.png00

與原始圖像相同的 PNG 圖像

PNG24.png24

透明背景的 24 位 RGB PNG 圖像

PNG32.png32

帶有透明度通道的 32 位 RGBA PNG 圖像

PNG48.png48

48 位 RGB PNG 圖像

PNG64.png64

帶有透明度通道的 64 位 RGBA PNG 圖像

PNG8.png8

8位的 PNG 圖像

PNM.pnm

可攜式任何圖像格式

PPM.ppm

可攜式像素圖格式(彩色)

PS.ps

Adobe PostScript

PSB.psb

Photoshop大型檔案格式

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

原始紅色,綠色和藍色樣本

RGBA.rgba

原始紅色,綠色,藍色和 Alpha 樣本

RGBO.rgbo

原始紅色,綠色,藍色和不透明度樣本

SIX.six

DEC SIXEL 圖像格式

SUN.sun

SUN 飽和圖像

SVG.svg

可縮放矢量圖形

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision Targa 圖像

VIPS.vips

VIPS圖像

WBMP.wbmp

無線點陣圖像

WEBP.webp

WebP圖像格式

YUV.yuv

CCIR 601 4:1:1 或 4:2:2

常見問題

這是如何運作的?

這個轉換器完全在您的瀏覽器中運行。當您選擇 一個檔案,它將讀入內存並轉換為所選格式。 然後,您可以下載轉換後的檔案。

轉換一個檔案需要多久?

轉換馬上開始,大部分檔案僅需一秒鐘轉換。 較大的檔案可能需要更長的時間。

我的檔案會發生什麼?

您的檔案絕不會上傳到我們的伺服器。它們在您的瀏覽器中 轉換,然後下載轉換後的檔案。我們從未看到您的檔案。

我可以轉換哪種類型的檔案?

我們支援所有圖形格式之間的轉換,包括 JPEG,PNG,GIF,WebP,SVG,BMP,TIFF,等等。

這需要多少費用?

此轉換器完全免費,且將永遠免費。 由於它在您的瀏覽器中運行,我們無需支付 伺服器費用,所以我們不需要向您收取費用。

我可以一次轉換多個檔案嗎?

可以!您一次可以轉換任意多的檔案。 當您添加檔案時,只需選擇多個檔案即可。