View TIFFs
Drag and drop or click to select.
Private and secure
Everything happens in your browser. Your files never touch our servers.
Blazing fast
No uploading, no waiting. Convert the moment you drop a file.
Actually free
No account required. No hidden costs. No file size tricks.
What is the TIFF format?
Tagged Image File Format
The Tagged Image File Format (TIFF) is a versatile, flexible format for storing image data. Developed in the mid-1980s by Aldus Corporation, now part of Adobe Systems, TIFF was designed to bridge the gap between proprietary image formats, providing an adaptable and detailed framework for image storage. Unlike simpler image formats, TIFF is capable of storing high-resolution, multi-layered images, making it a preferred choice for professionals in fields like photography, publishing, and geospatial imagery.
At its core, the TIFF format is container-like, capable of holding various types of image encodings, including but not limited to JPEG, LZW, PackBits, and raw uncompressed data. This flexibility is a key feature, as it allows TIFF images to be highly optimized for different needs, whether that's preserving the utmost image quality or reducing file sizes for easier sharing.
A distinctive characteristic of TIFF is its structure, which operates on the basic principle of tags. Each TIFF file is composed of one or more directories, commonly referred to as IFDs (Image File Directories), which contain image metadata, the image data itself, and potentially other subfiles. Each IFD consists of a defined list of entries; each entry is a tag that specifies different attributes of the file, such as image dimensions, compression type, and color information. This tag structure enables TIFF files to handle a wide range of image types and data, making them extremely versatile.
One of the strengths of TIFF is its support for various color spaces and color models, including RGB, CMYK, LAB, and others, allowing for accurate color representation in a myriad of professional and creative applications. Additionally, TIFF can support multiple color depths, ranging from 1-bit (black and white) to 32-bit (and higher) true color images. This depth of color support, combined with the ability to handle alpha channels (for transparency), makes TIFF an ideal format for high-quality image reproduction.
TIFF also offers robust support for metadata, which can include copyright information, timestamps, GPS data, and much more. This is facilitated by its utilization of the IPTC (International Press Telecommunications Council), EXIF (Exchangeable Image File Format), and XMP (Extensible Metadata Platform) standards. Such comprehensive metadata capabilities are invaluable for cataloging, searching, and managing large image libraries, particularly in professional environments where detailed information about each image is crucial.
Another noteworthy feature of TIFF is its ability to handle multiple images and pages within a single file, a property known as multi-page support. This makes TIFF especially useful for scanned documents, faxed documents, and storyboard applications, where consolidating related images into a single file can significantly streamline workflows and file management.
Despite its many advantages, TIFF's complexity and flexibility can lead to compatibility issues. Not all TIFF files are created equal, and not all software handles every possible TIFF variant. This has led to the emergence of subsets, such as TIFF/EP (Electronic Photography), which aims to standardize the format for digital camera images, and TIFF/IT (Information Technology), which targets the needs of the publishing industry. These subsets work to ensure that files conform to specific profiles, enhancing interoperability across different platforms and applications.
Compression is another significant aspect of TIFF, as the format supports both lossless and lossy compression schemes. Lossless compression, such as LZW (Lempel-Ziv-Welch) and Deflate (similar to ZIP), is preferred for applications where preserving original image quality is paramount. Lossy compression, such as JPEG, might be used when file size is a more critical concern than perfect fidelity. While TIFF's flexibility in compression is a strength, it also requires users to understand the trade-offs involved in choosing a compression method.
One of the more technical aspects of TIFF is its file header, which contains important information about the file, including the byte order used within the file. TIFF supports both big-endian (Motorola) and little-endian (Intel) byte orders, and the header's first few bytes indicate which of these is used, ensuring that TIFF files can be read correctly on different systems and architectures. Additionally, the header specifies the offset to the first IFD, essentially pointing to where the image data and metadata start, a crucial aspect for reading the file.
Handling images with high dynamic range (HDR) is another arena where TIFF excels. Through the use of floating point values for pixel data, TIFF files can represent a broader range of luminance and color values than standard image formats, accommodating the needs of industries like special effects, digital cinema, and professional photography which demand such high-quality image capture and reproduction.
Despite its versatility and widespread use in professional fields, the TIFF format is not without its criticisms. The very flexibility that makes TIFF so powerful also contributes to its complexities, making it challenging to work with without specialized software or a thorough understanding of its intricacies. Furthermore, the file sizes of TIFF images can be considerably large, especially when dealing with uncompressed image data or high-resolution images, leading to storage and transmission challenges.
Over the years, efforts have been made to enhance TIFF's capabilities further while addressing its limitations. For example, BigTIFF is an extension of the original TIFF specification that allows for files larger than 4 GB, addressing the need to work with extremely high-resolution or detailed imagery that exceeds the limitations of standard TIFF files. This evolution reflects the ongoing development and adaptation of TIFF to meet the needs of advancing technology and emerging applications.
In conclusion, the Tagged Image File Format (TIFF) stands as a testament to the evolving needs and challenges of digital image storage, balancing flexibility with complexity. Its ability to encapsulate detailed image data and metadata, support diverse compression schemes, and adapt to various professional settings makes it an enduring format. Nevertheless, navigating its complexities requires a solid understanding of its structure and capabilities. As digital imaging technology continues to advance, the TIFF format will likely evolve, maintaining its relevance and utility in professional and creative domains.
Supported formats
AAI.aai
AAI Dune image
AI.ai
Adobe Illustrator CS2
AVIF.avif
AV1 Image File Format
BAYER.bayer
Raw Bayer Image
BMP.bmp
Microsoft Windows bitmap image
CIN.cin
Cineon Image File
CLIP.clip
Image Clip Mask
CMYK.cmyk
Raw cyan, magenta, yellow, and black samples
CUR.cur
Microsoft icon
DCX.dcx
ZSoft IBM PC multi-page Paintbrush
DDS.dds
Microsoft DirectDraw Surface
DPX.dpx
SMTPE 268M-2003 (DPX 2.0) image
DXT1.dxt1
Microsoft DirectDraw Surface
EPDF.epdf
Encapsulated Portable Document Format
EPI.epi
Adobe Encapsulated PostScript Interchange format
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Adobe Encapsulated PostScript Interchange format
EPT.ept
Encapsulated PostScript with TIFF preview
EPT2.ept2
Encapsulated PostScript Level II with TIFF preview
EXR.exr
High dynamic-range (HDR) image
FF.ff
Farbfeld
FITS.fits
Flexible Image Transport System
GIF.gif
CompuServe graphics interchange format
HDR.hdr
High Dynamic Range image
HEIC.heic
High Efficiency Image Container
HRZ.hrz
Slow Scan TeleVision
ICO.ico
Microsoft icon
ICON.icon
Microsoft icon
J2C.j2c
JPEG-2000 codestream
J2K.j2k
JPEG-2000 codestream
JNG.jng
JPEG Network Graphics
JP2.jp2
JPEG-2000 File Format Syntax
JPE.jpe
Joint Photographic Experts Group JFIF format
JPEG.jpeg
Joint Photographic Experts Group JFIF format
JPG.jpg
Joint Photographic Experts Group JFIF format
JPM.jpm
JPEG-2000 File Format Syntax
JPS.jps
Joint Photographic Experts Group JPS format
JPT.jpt
JPEG-2000 File Format Syntax
JXL.jxl
JPEG XL image
MAP.map
Multi-resolution Seamless Image Database (MrSID)
MAT.mat
MATLAB level 5 image format
PAL.pal
Palm pixmap
PALM.palm
Palm pixmap
PAM.pam
Common 2-dimensional bitmap format
PBM.pbm
Portable bitmap format (black and white)
PCD.pcd
Photo CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Palm Database ImageViewer Format
PDF.pdf
Portable Document Format
PDFA.pdfa
Portable Document Archive Format
PFM.pfm
Portable float format
PGM.pgm
Portable graymap format (gray scale)
PGX.pgx
JPEG 2000 uncompressed format
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Joint Photographic Experts Group JFIF format
PNG.png
Portable Network Graphics
PNG00.png00
PNG inheriting bit-depth, color-type from original image
PNG24.png24
Opaque or binary transparent 24-bit RGB (zlib 1.2.11)
PNG32.png32
Opaque or binary transparent 32-bit RGBA
PNG48.png48
Opaque or binary transparent 48-bit RGB
PNG64.png64
Opaque or binary transparent 64-bit RGBA
PNG8.png8
Opaque or binary transparent 8-bit indexed
PNM.pnm
Portable anymap
PPM.ppm
Portable pixmap format (color)
PS.ps
Adobe PostScript file
PSB.psb
Adobe Large Document Format
PSD.psd
Adobe Photoshop bitmap
RGB.rgb
Raw red, green, and blue samples
RGBA.rgba
Raw red, green, blue, and alpha samples
RGBO.rgbo
Raw red, green, blue, and opacity samples
SIX.six
DEC SIXEL Graphics Format
SUN.sun
Sun Rasterfile
SVG.svg
Scalable Vector Graphics
TIFF.tiff
Tagged Image File Format
VDA.vda
Truevision Targa image
VIPS.vips
VIPS image
WBMP.wbmp
Wireless Bitmap (level 0) image
WEBP.webp
WebP Image Format
YUV.yuv
CCIR 601 4:1:1 or 4:2:2
Frequently asked questions
How does this work?
This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.
How long does it take to convert a file?
Conversions start instantly, and most files are converted in under a second. Larger files may take longer.
What happens to my files?
Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.
What file types can I convert?
We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.
How much does this cost?
This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.
Can I convert multiple files at once?
Yes! You can convert as many files as you want at once. Just select multiple files when you add them.