View EXRs
Drag and drop or click to select.
Private and secure
Everything happens in your browser. Your files never touch our servers.
Blazing fast
No uploading, no waiting. Convert the moment you drop a file.
Actually free
No account required. No hidden costs. No file size tricks.
What is the EXR format?
High dynamic-range (HDR) image
The Extended Range (EXR) file format is a high dynamic range imaging file format developed by Industrial Light & Magic (ILM) and released in 2003. It is specifically designed to facilitate the digital storage of motion picture frames and still images that require high dynamic range and wide color gamut. EXR's development was driven by the need for greater precision and flexibility in image storage, allowing visual effects artists and digital cinematographers to work with images that closely represent real-world lighting and color conditions, thus overcoming limitations posed by standard image formats.
EXR files are capable of storing image data in various precision levels, including 16-bit floating-point, 32-bit floating-point, and 32-bit integer pixel formats. This flexibility allows EXR files to precisely represent a very wide range of intensities, from the darkest shadows to the brightest highlights, far beyond what standard 8-bit or even 16-bit image formats can offer. This feature is particularly vital in the visual effects industry, where accurately capturing the nuances of light and shadow can significantly impact the realism and immersive quality of the final output.
Another notable feature of the EXR format is its support for multiple compression techniques, which helps in managing the file sizes without significantly compromising image quality. Among the supported compression schemas are Zip, Piz, PXR24, B44, B44A, and none (uncompressed). Each compression method has its use cases, allowing for a balance between file size, image quality, and the computational resources required for compression and decompression. This flexibility makes EXR files adaptable to various workflows and storage or bandwidth constraints.
A key characteristic of EXR files is their support for multi-part and deep image formats. Multi-part images allow different elements of a scene, such as background layers, foreground objects, or different types of visual effects, to be stored in separate parts within a single EXR file. Each part can have its metadata, such as attributes or comments, making the EXR format exceptionally versatile for complex visual effects workflows. Deep image formats, on the other hand, store pixel values along with depth information for each sample, providing the ability to composite 3D rendered scenes with intricate detail and realism.
EXR files also shine in terms of their support for arbitrary channels beyond the standard RGB (Red, Green, Blue) color model. This means that in addition to storing color information, EXR files can hold various other types of data, such as alpha channels for transparency, Z-depth for distance calculations, and even custom channels for specific use cases. This capability is indispensable for advanced compositing and visual effects creation, as it allows for a highly nuanced manipulation of the image elements based on attributes that go beyond mere color.
The format's design also emphasizes extensibility and future-proofing. EXR files contain a header section that stores metadata about the image, such as resolution, pixel aspect ratio, the number of channels, and so on. Furthermore, the header can include custom attributes added by applications or users, making it easy to extend the format's capabilities or to embed project-specific information. This open nature of the EXR format ensures that it can evolve to meet emerging needs in image processing and visual effects.
Despite its advanced features, the complexity of working with EXR files can be a double-edged sword. The format's flexibility and wide range of capabilities mean that specialized software and a good understanding of the format's potential and pitfalls are necessary to make the most out of it. Popular industry-standard software solutions such as Adobe Photoshop, Nuke, and Autodesk Maya support the EXR format, but leveraging its full capabilities often requires more in-depth knowledge than working with simpler image formats.
The robustness of the EXR format in handling high dynamic range and wide color gamut content makes it particularly suitable for modern workflows that involve High Dynamic Range (HDR) imaging. As display technologies continue to evolve, with HDR becoming increasingly common in both consumer and professional markets, the importance of a format like EXR that can accurately capture and store high-fidelity image data continues to grow. This makes EXR not only relevant for content creation for film and television but also for applications in virtual reality, video games, and any digital content where image quality and realism are paramount.
One of the compelling advantages of the EXR format is its open-source nature. Initially developed by ILM, the format's specifications and related libraries (such as OpenEXR) are freely available, encouraging widespread adoption and integration into various software tools and platforms. The open-source approach also fosters community-driven development and improvements, ensuring that the format stays relevant and continues to meet the demands of an ever-evolving digital imaging landscape. The OpenEXR library, for instance, provides a comprehensive suite of tools for reading, writing, and processing EXR files, making it accessible for developers to incorporate EXR support into their applications.
The technical specifications of EXR, coupled with its adoption in industry-standard software and the backing of the open-source community, have cemented its position as a critical tool in the digital content creation pipeline. From feature films to television productions and beyond, EXR enables a level of image fidelity and creative flexibility that is hard to achieve with other formats. Its ability to handle complex, multi-layer compositions and store vast ranges of luminance values makes it an indispensable format for visual effects artists, cinematographers, and digital content creators aiming for the highest quality and realism in their work.
Looking forward, the evolution of the EXR format and its ecosystem is likely to continue in response to the changing needs of the digital imaging industry. The ongoing development of new compression algorithms, enhancements in data handling and processing, and improvements in metadata management are areas where the EXR format can see further advancements. Additionally, as the push towards more immersive and interactive media formats continues, EXR's capability to store and manage complex, multi-dimensional data sets it apart as a format well-suited for future technologies such as augmented reality (AR) and virtual reality (VR) content creation.
In conclusion, the Extended Range (EXR) image format represents a significant advancement in digital imaging technology, providing tools and capabilities that go far beyond traditional image formats. Its development reflects a broader industry trend towards creating more realistic and immersive visual content, where capturing the full range of light and color seen in the real world becomes increasingly important. Through its high precision, support for a wide range of data types, and flexibility in handling complex image compositions, EXR sets a high bar for what is possible in digital imaging. As technology advances and the demand for high-quality, high-fidelity images continues to grow, the EXR format's role as a pivotal tool in the digital imaging and content creation ecosystem is likely to be further solidified.
Supported formats
AAI.aai
AAI Dune image
AI.ai
Adobe Illustrator CS2
AVIF.avif
AV1 Image File Format
BAYER.bayer
Raw Bayer Image
BMP.bmp
Microsoft Windows bitmap image
CIN.cin
Cineon Image File
CLIP.clip
Image Clip Mask
CMYK.cmyk
Raw cyan, magenta, yellow, and black samples
CUR.cur
Microsoft icon
DCX.dcx
ZSoft IBM PC multi-page Paintbrush
DDS.dds
Microsoft DirectDraw Surface
DPX.dpx
SMTPE 268M-2003 (DPX 2.0) image
DXT1.dxt1
Microsoft DirectDraw Surface
EPDF.epdf
Encapsulated Portable Document Format
EPI.epi
Adobe Encapsulated PostScript Interchange format
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Adobe Encapsulated PostScript Interchange format
EPT.ept
Encapsulated PostScript with TIFF preview
EPT2.ept2
Encapsulated PostScript Level II with TIFF preview
EXR.exr
High dynamic-range (HDR) image
FF.ff
Farbfeld
FITS.fits
Flexible Image Transport System
GIF.gif
CompuServe graphics interchange format
HDR.hdr
High Dynamic Range image
HEIC.heic
High Efficiency Image Container
HRZ.hrz
Slow Scan TeleVision
ICO.ico
Microsoft icon
ICON.icon
Microsoft icon
J2C.j2c
JPEG-2000 codestream
J2K.j2k
JPEG-2000 codestream
JNG.jng
JPEG Network Graphics
JP2.jp2
JPEG-2000 File Format Syntax
JPE.jpe
Joint Photographic Experts Group JFIF format
JPEG.jpeg
Joint Photographic Experts Group JFIF format
JPG.jpg
Joint Photographic Experts Group JFIF format
JPM.jpm
JPEG-2000 File Format Syntax
JPS.jps
Joint Photographic Experts Group JPS format
JPT.jpt
JPEG-2000 File Format Syntax
JXL.jxl
JPEG XL image
MAP.map
Multi-resolution Seamless Image Database (MrSID)
MAT.mat
MATLAB level 5 image format
PAL.pal
Palm pixmap
PALM.palm
Palm pixmap
PAM.pam
Common 2-dimensional bitmap format
PBM.pbm
Portable bitmap format (black and white)
PCD.pcd
Photo CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Palm Database ImageViewer Format
PDF.pdf
Portable Document Format
PDFA.pdfa
Portable Document Archive Format
PFM.pfm
Portable float format
PGM.pgm
Portable graymap format (gray scale)
PGX.pgx
JPEG 2000 uncompressed format
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Joint Photographic Experts Group JFIF format
PNG.png
Portable Network Graphics
PNG00.png00
PNG inheriting bit-depth, color-type from original image
PNG24.png24
Opaque or binary transparent 24-bit RGB (zlib 1.2.11)
PNG32.png32
Opaque or binary transparent 32-bit RGBA
PNG48.png48
Opaque or binary transparent 48-bit RGB
PNG64.png64
Opaque or binary transparent 64-bit RGBA
PNG8.png8
Opaque or binary transparent 8-bit indexed
PNM.pnm
Portable anymap
PPM.ppm
Portable pixmap format (color)
PS.ps
Adobe PostScript file
PSB.psb
Adobe Large Document Format
PSD.psd
Adobe Photoshop bitmap
RGB.rgb
Raw red, green, and blue samples
RGBA.rgba
Raw red, green, blue, and alpha samples
RGBO.rgbo
Raw red, green, blue, and opacity samples
SIX.six
DEC SIXEL Graphics Format
SUN.sun
Sun Rasterfile
SVG.svg
Scalable Vector Graphics
TIFF.tiff
Tagged Image File Format
VDA.vda
Truevision Targa image
VIPS.vips
VIPS image
WBMP.wbmp
Wireless Bitmap (level 0) image
WEBP.webp
WebP Image Format
YUV.yuv
CCIR 601 4:1:1 or 4:2:2
Frequently asked questions
How does this work?
This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.
How long does it take to convert a file?
Conversions start instantly, and most files are converted in under a second. Larger files may take longer.
What happens to my files?
Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.
What file types can I convert?
We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.
How much does this cost?
This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.
Can I convert multiple files at once?
Yes! You can convert as many files as you want at once. Just select multiple files when you add them.