OCR de cualquier PNG24

Arrastre y suelte una foto, escaneo o PDF (hasta 2.5GB). Extraemos el texto directamente en su navegador — gratis, ilimitado y sus archivos nunca salen de su dispositivo.

Privado y seguro

Todo sucede en tu navegador. Tus archivos nunca tocan nuestros servidores.

Ultrarrápido

Sin subidas, sin esperas. Convierte en el momento en que sueltas un archivo.

Realmente gratis

No se requiere cuenta. Sin costos ocultos. Sin trucos de tamaño de archivo.

El Reconocimiento Óptico de Caracteres (OCR) convierte imágenes de texto—escaneos, fotos de smartphone, PDFs—en cadenas legibles por máquina y, cada vez más, en datos estructurados. El OCR moderno es una tubería que limpia una imagen, encuentra texto, lo lee y exporta metadatos ricos para que los sistemas posteriores puedan buscar, indexar o extraer campos. Dos estándares de salida ampliamente utilizados son hOCR, un microformato HTML para texto y diseño, y ALTO XML, un esquema orientado a bibliotecas/archivos; ambos preservan posiciones, orden de lectura y otras pistas de diseño y son compatibles con motores populares como Tesseract.

Un recorrido rápido por la tubería

Preprocesamiento. La calidad del OCR comienza con la limpieza de la imagen: conversión a escala de grises, eliminación de ruido, umbralización (binarización) y corrección de inclinación. Los tutoriales canónicos de OpenCV cubren umbralización global, adaptativa y Otsu —elementos básicos para documentos con iluminación no uniforme o histogramas bimodales. Cuando la iluminación varía dentro de una página (piense en las instantáneas del teléfono), los métodos adaptativos a menudo superan a un único umbral global; Otsu elige automáticamente un umbral analizando el histograma. La corrección de la inclinación es igualmente importante: la corrección de inclinación basada en Hough (Transformada de Hough Line) junto con la binarización de Otsu es una receta común y efectiva en las tuberías de preprocesamiento de producción.

Detección vs. reconocimiento. El OCR se divide típicamente en detección de texto (¿dónde está el texto?) y reconocimiento de texto (¿qué dice?). En escenas naturales y muchos escaneos, los detectores totalmente convolucionales como EAST predicen eficientemente cuadriláteros a nivel de palabra o línea sin pesadas etapas de propuesta y se implementan en kits de herramientas comunes (por ejemplo, tutorial de detección de texto de OpenCV). En páginas complejas (periódicos, formularios, libros), la segmentación de líneas/regiones y la inferencia del orden de lectura son importantes:Kraken implementa la segmentación tradicional de zonas/líneas y la segmentación neuronal de línea de base, con soporte explícito para diferentes escrituras y direcciones (LTR/RTL/vertical).

Modelos de reconocimiento. El clásico caballo de batalla de código abierto Tesseract (de código abierto por Google, con raíces en HP) evolucionó de un clasificador de caracteres a un reconocedor de secuencias basado en LSTM y puede emitir archivos PDF con capacidad de búsqueda, salidas compatibles con hOCR/ALTO, y más desde la CLI. Los reconocedores modernos se basan en el modelado de secuencias sin caracteres presegmentados. Clasificación Temporal Conexionista (CTC) sigue siendo fundamental, aprendiendo alineaciones entre secuencias de características de entrada y cadenas de etiquetas de salida; se utiliza ampliamente en tuberías de escritura a mano y texto de escena.

En los últimos años, los Transformers han remodelado el OCR. TrOCR utiliza un codificador Vision Transformer más un decodificador Text Transformer, entrenado en grandes corpus sintéticos y luego ajustado en datos reales, con un sólido rendimiento en benchmarks de texto impreso, manuscrito y de escena (véase también documentación de Hugging Face). En paralelo, algunos sistemas eluden el OCR para la comprensión posterior: Donut (Document Understanding Transformer) es un codificador-decodificador sin OCR que genera directamente respuestas estructuradas (como JSON de clave-valor) a partir de imágenes de documentos (repositorio, tarjeta de modelo), evitando la acumulación de errores cuando un paso de OCR separado alimenta un sistema de IE.

Motores y bibliotecas

Si desea una lectura de texto con todo incluido en muchas escrituras, EasyOCR ofrece una API simple con más de 80 modelos de lenguaje, que devuelve cuadros, texto y confidencias, útil para prototipos y escrituras no latinas. Para documentos históricos, Kraken brilla con la segmentación de línea de base y el orden de lectura consciente de la escritura; para un entrenamiento flexible a nivel de línea, Calamari se basa en el linaje de Ocropy (Ocropy) con reconocedores (multi-)LSTM+CTC y una CLI para ajustar modelos personalizados.

Conjuntos de datos y benchmarks

La generalización depende de los datos. Para la escritura a mano, la Base de datos de escritura a mano IAM proporciona oraciones en inglés de diversos escritores para entrenamiento y evaluación; es un conjunto de referencia de larga data para el reconocimiento de líneas y palabras. Para el texto de escena, COCO-Text superpuso anotaciones extensas sobre MS-COCO, con etiquetas para texto impreso/manuscrito, legible/ilegible, escritura y transcripciones completas (véase también la página original del proyecto). El campo también depende en gran medida del preentrenamiento sintético: SynthText in the Wild representa texto en fotografías con geometría e iluminación realistas, proporcionando enormes volúmenes de datos para preentrenar detectores y reconocedores (referencia código y datos).

Las competiciones bajo el paraguas de Lectura Robusta de ICDAR mantienen la evaluación fundamentada. Las tareas recientes enfatizan la detección/lectura de extremo a extremo e incluyen la vinculación de palabras en frases, con el código oficial informando precisión/recuperación/puntuación F, intersección sobre unión (IoU) y métricas de distancia de edición a nivel de carácter, lo que refleja lo que los profesionales deben rastrear.

Formatos de salida y uso posterior

El OCR rara vez termina en texto plano. Los archivos y las bibliotecas digitales prefieren ALTO XML porque codifica el diseño físico (bloques/líneas/palabras con coordenadas) junto con el contenido, y se combina bien con el empaquetado METS. El microformato hOCR , por el contrario, incorpora la misma idea en HTML/CSS utilizando clases como ocr_line y ocrx_word, lo que facilita su visualización, edición y transformación con herramientas web. Tesseract expone ambos, por ejemplo, generando hOCR o PDF con capacidad de búsqueda directamente desde la CLI (guía de salida de PDF); los envoltorios de Python como pytesseract añaden comodidad. Existen convertidores para traducir entre hOCR y ALTO cuando los repositorios tienen estándares de ingesta fijos —véase esta lista curada de herramientas de formato de archivo OCR.

Orientación práctica

  • Comience con los datos y la limpieza. Si sus imágenes son fotos de teléfono o escaneos de calidad mixta, invierta en umbralización (adaptativa y Otsu) y corrección de inclinación (Hough) antes de cualquier ajuste del modelo. A menudo obtendrá más de una receta de preprocesamiento robusta que de cambiar de reconocedores.
  • Elija el detector adecuado. Para páginas escaneadas con columnas regulares, un segmentador de páginas (zonas → líneas) puede ser suficiente; para imágenes naturales, los detectores de un solo disparo como EAST son líneas de base sólidas y se conectan a muchos kits de herramientas (ejemplo de OpenCV).
  • Elija un reconocedor que coincida con su texto. Para el latín impreso, Tesseract (LSTM/OEM) es robusto y rápido; para múltiples escrituras o prototipos rápidos, EasyOCR es productivo; para escritura a mano o tipos de letra históricos, considere Kraken o Calamari y planee un ajuste fino. Si necesita un acoplamiento estrecho con la comprensión de documentos (extracción de clave-valor, VQA), evalúe TrOCR (OCR) frente a Donut (sin OCR) en su esquema—Donut puede eliminar todo un paso de integración.
  • Mida lo que importa. Para sistemas de extremo a extremo, informe la detección puntuación F y el reconocimiento CER/WER (ambos basados en la distancia de edición de Levenshtein ; véase CTC); para tareas con mucho diseño, rastree la IoU/ajuste y la distancia de edición normalizada a nivel de carácter como en los kits de evaluación de ICDAR RRC .
  • Exporte salidas ricas. Prefiera hOCR /ALTO (o ambos) para mantener las coordenadas y el orden de lectura, vital para resaltar los resultados de búsqueda, la extracción de tablas/campos y la procedencia. La CLI de Tesseract y pytesseract lo convierten en una sola línea.

Mirando hacia el futuro

La tendencia más fuerte es la convergencia: la detección, el reconocimiento, el modelado del lenguaje e incluso la decodificación específica de la tarea se están fusionando en pilas de Transformer unificadas. El preentrenamiento en grandes corpus sintéticos sigue siendo un multiplicador de fuerza. Los modelos sin OCR competirán agresivamente dondequiera que el objetivo sean salidas estructuradas en lugar de transcripciones literales. Espere también implementaciones híbridas: un detector ligero más un reconocedor de estilo TrOCR para texto de formato largo, y un modelo de estilo Donut para formularios y recibos.

Lecturas adicionales y herramientas

Tesseract (GitHub) · Documentación de Tesseract · Especificación de hOCR · Fondo de ALTO · Detector EAST · Detección de texto de OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Escritura a mano de IAM · Herramientas de formato de archivo OCR · EasyOCR

Preguntas frecuentes

¿Qué es OCR?

El Reconocimiento Óptico de Caracteres (OCR) es una tecnología utilizada para convertir diferentes tipos de documentos, como documentos en papel escaneados, archivos PDF o imágenes capturadas por una cámara digital, en datos editables y buscables.

¿Cómo funciona OCR?

OCR funciona escaneando una imagen o documento de entrada, segmentando la imagen en caracteres individuales y comparando cada carácter con una base de datos de formas de caracteres utilizando reconocimiento de patrones o reconocimiento de características.

¿Cuáles son algunas aplicaciones prácticas de OCR?

OCR se utiliza en una variedad de sectores y aplicaciones, incluyendo la digitalización de documentos impresos, la habilitación de servicios de texto a voz, la automatización de procesos de entrada de datos, y ayudar a los usuarios con discapacidad visual a interactuar mejor con el texto.

¿Es OCR siempre 100% exacto?

Aunque se han hecho grandes avances en la tecnología OCR, no es infalible. La precisión puede variar dependiendo de la calidad del documento original y las especificidades del software OCR que se esté utilizando.

¿Puede OCR reconocer la escritura a mano?

Aunque OCR está diseñado principalmente para texto impreso, algunos sistemas avanzados de OCR también pueden reconocer escritura a mano clara y consistente. Sin embargo, en general, el reconocimiento de la escritura a mano es menos preciso debido a la amplia variación en los estilos de escritura individuales.

¿Puede OCR manejar múltiples idiomas?

Sí, muchos sistemas de software OCR pueden reconocer múltiples idiomas. Sin embargo, es importante asegurar que el idioma específico sea soportado por el software que estás utilizando.

¿Cuál es la diferencia entre OCR e ICR?

OCR significa Reconocimiento Óptico de Caracteres y se utiliza para reconocer texto impreso, mientras que ICR, o Reconocimiento Inteligente de Caracteres, es más avanzado y se utiliza para reconocer texto escrito a mano.

¿Funciona OCR con cualquier fuente y tamaño de texto?

OCR funciona mejor con fuentes claras y fáciles de leer y tamaños de texto estándar. Si bien puede funcionar con varias fuentes y tamaños, la precisión tiende a disminuir cuando se trata de fuentes inusuales o tamaños de texto muy pequeños.

¿Cuáles son las limitaciones de la tecnología OCR?

OCR puede tener dificultades con documentos de baja resolución, fuentes complejas, textos mal impresos, escritura a mano y documentos con fondos que interfieren con el texto. Además, aunque puede trabajar con muchos idiomas, puede que no cubra cada idioma a la perfección.

¿Puede OCR escanear texto en color o fondos en color?

Sí, OCR puede escanear texto en color y fondos en color, aunque generalmente es más efectivo con combinaciones de colores de alto contraste, como texto negro sobre un fondo blanco. La precisión puede disminuir cuando los colores del texto y del fondo carecen de suficiente contraste.

¿Qué es el formato PNG24?

RGB opaco o transparente binario de 24 bits (zlib 1.2.11)

El formato de imagen PNG24, también conocido comúnmente como PNG Truecolor, es un formato sin pérdida ampliamente utilizado para almacenar imágenes. Definido como parte de la especificación de Portable Network Graphics (PNG), ha ganado una considerable popularidad debido a su capacidad para mostrar imágenes con una gran profundidad de color sin sacrificar la calidad durante la compresión. A diferencia de sus contrapartes como JPEG, que utiliza técnicas de compresión con pérdida que provocan una degradación de la calidad al guardar, PNG24 mantiene la calidad de imagen original independientemente de cuántas veces se guarde o comprima el archivo.

El formato PNG24 deriva su nombre de su capacidad para almacenar 24 bits de información de color por píxel. Esto es posible asignando 8 bits o un byte para cada uno de los tres colores primarios: rojo, verde y azul (RGB). Esta configuración permite un amplio espectro de representación de color, lo que permite específicamente la visualización de hasta 16,7 millones de colores diferentes. Una gama de colores tan amplia hace que PNG24 sea una opción ideal para imágenes de alta calidad, incluidas fotografías, arte digital y gráficos con degradados.

Una de las características definitorias de PNG24 es su algoritmo de compresión sin pérdida. PNG utiliza un método conocido como DEFLATE, una combinación del algoritmo LZ77 y la codificación de Huffman. Este método reduce eficazmente el tamaño de los archivos sin ninguna pérdida de calidad de imagen, lo que lo hace muy eficaz para compartir y almacenar imágenes en línea. La compresión no descarta ningún dato; en cambio, identifica patrones y estructuras repetitivos dentro de los datos de la imagen y codifica esta información de forma más compacta.

La transparencia es otra característica importante del formato PNG24. A diferencia de GIF, que solo puede admitir un único nivel de transparencia (activado o desactivado), PNG24 admite 256 niveles de transparencia a través de su canal alfa. Cada píxel en una imagen PNG24 puede tener un nivel de transparencia individual que varía desde completamente opaco hasta completamente transparente. Esta característica es particularmente útil para superponer imágenes en diferentes fondos, crear bordes suaves y crear interfaces gráficas complejas sin la necesidad de enmascaramiento adicional en la imagen.

Las imágenes PNG24 también admiten una función conocida como corrección gamma. Esto permite que las imágenes mantengan un brillo y una coloración constantes en diferentes dispositivos de visualización. La corrección gamma funciona ajustando la luminancia de la imagen de acuerdo con un valor gamma predefinido, lo que ayuda a compensar las diferentes respuestas gamma de diferentes monitores. Esto asegura que una imagen editada en un monitor se verá similar cuando se vea en otra pantalla, un aspecto crítico para fotógrafos y diseñadores gráficos.

El entrelazado es una función opcional en PNG24 que permite que una imagen se muestre progresivamente en los navegadores web. Esto es particularmente útil para conexiones de Internet lentas donde los usuarios pueden ver una versión de baja resolución de la imagen mientras aún se está cargando, mejorando la experiencia del usuario. PNG utiliza el algoritmo Adam7, un esquema de entrelazado de siete pasadas, que aumenta gradualmente el detalle de la imagen con cada pasada. Esto contrasta con el formato no entrelazado, donde la imagen aparece línea por línea de arriba hacia abajo.

En términos de implementación y soporte, PNG24 está bien soportado en navegadores web modernos, software de edición de imágenes y varios sistemas operativos. Este amplio soporte se debe en parte al estándar abierto del formato, que fue desarrollado como una alternativa sin patente a GIF. La especificación PNG, incluido PNG24, es mantenida por el World Wide Web Consortium (W3C), asegurando su evolución continua y compatibilidad con los estándares web.

A pesar de sus numerosas ventajas, el formato PNG24 no está exento de inconvenientes. Uno de los problemas principales es el tamaño del archivo; debido a su compresión sin pérdida y alta profundidad de color, los archivos PNG24 suelen ser más grandes que sus contrapartes JPEG. Este tamaño de archivo más grande puede provocar tiempos de carga más largos para los sitios web y utilizar más ancho de banda. Por lo tanto, para uso web, es crucial equilibrar la necesidad de calidad con la necesidad de velocidad y, en algunos casos, los formatos con compresión con pérdida como JPEG pueden ser más apropiados.

Además, si bien la amplia gama de colores de PNG24 es beneficiosa para imágenes de alta calidad, puede ser innecesaria para gráficos más simples con colores limitados. En tales casos, los formatos con una profundidad de color más baja como PNG8, que admite 256 colores, pueden ser más adecuados. Elegir el formato apropiado según el contenido de la imagen puede reducir significativamente el tamaño del archivo sin comprometer la calidad visual para el uso previsto.

Además del formato PNG24 estándar, también existe una variante conocida como PNG32. La diferencia radica en la adición de un canal alfa de 8 bits a los 24 bits existentes para rojo, verde y azul, lo que da como resultado un total de 32 bits por píxel. Esta incorporación del canal alfa directamente en el formato permite un control aún mayor sobre la transparencia, lo que hace que PNG32 sea preferible para imágenes que requieren sofisticados efectos de transparencia.

La creación y manipulación de archivos PNG24 se puede lograr utilizando una variedad de herramientas y aplicaciones de software. La mayoría del software de edición de imágenes, como Adobe Photoshop, GIMP y otros, ofrecen soporte para PNG24, lo que permite a los usuarios guardar su trabajo en este formato directamente. Además, hay varias herramientas en línea y fuera de línea disponibles para optimizar los archivos PNG24 para uso web, comprimiendo aún más los archivos sin perder calidad. Estas herramientas a menudo aplican estrategias más agresivas para reducir el tamaño del archivo, como reducir la paleta de colores al mínimo necesario o ajustar la configuración de compresión.

Teniendo en cuenta los detalles técnicos, el proceso de codificación de PNG24 implica varios pasos, incluido el filtrado, que tiene como objetivo mejorar la efectividad de la compresión. Antes de la compresión real, el codificador puede aplicar uno de los cinco métodos de filtro a cada línea de imagen para transformar los datos de la imagen en una forma más comprimible. Este paso de preprocesamiento puede afectar significativamente el tamaño final del archivo, y elegir el método de filtro correcto según las características de la imagen puede conducir a una compresión más eficiente.

Otro aspecto importante de los archivos PNG24 es su estructura basada en fragmentos. Un archivo PNG consta de varios fragmentos, cada uno con un propósito diferente, como almacenar los datos de la imagen, metadatos, perfiles de color y más. Este enfoque modular no solo facilita el procesamiento y la representación eficientes de las imágenes, sino que también permite la inclusión de información adicional sin interrumpir la estructura de datos existente. Por ejemplo, es posible incrustar información de derechos de autor y licencias directamente en el archivo, mejorando la protección y gestión de los activos digitales.

La accesibilidad y la internacionalización también se consideran en los archivos PNG24. La información textual, como descripciones y anotaciones, se puede almacenar en varios idiomas dentro de los fragmentos de texto del archivo. Esta característica hace que PNG24 sea adecuado para la distribución global al permitir que los creadores incluyan información y metadatos localizados, lo que hace que las imágenes sean más accesibles y comprensibles para diversas audiencias.

En conclusión, el formato de imagen PNG24 se erige como una opción robusta y versátil para almacenar y compartir imágenes de alta calidad. Su compatibilidad con una amplia gama de colores, soporte para transparencia y compresión sin pérdida lo convierten en una opción atractiva tanto para medios web como impresos. Sin embargo, su tamaño de archivo relativamente grande y el potencial de exageración en gráficos simples resaltan la importancia de seleccionar el formato apropiado según las necesidades específicas de un proyecto. A medida que la tecnología y los estándares web continúan evolucionando, PNG24 sigue siendo un actor crítico en el ámbito de las imágenes digitales, apreciado por su flexibilidad y calidad.

Formatos de archivo compatibles

AAI.aai

Imagen Dune AAI

AI.ai

Adobe Illustrator CS2

AVIF.avif

Formato de archivo de imagen AV1

BAYER.bayer

Imagen Bayer en bruto

BMP.bmp

Imagen bitmap de Microsoft Windows

CIN.cin

Archivo de imagen Cineon

CLIP.clip

Máscara de clip de imagen

CMYK.cmyk

Muestras de cian, magenta, amarillo y negro en bruto

CUR.cur

Icono de Microsoft

DCX.dcx

ZSoft IBM PC Paintbrush multipágina

DDS.dds

Superficie DirectDraw de Microsoft

DPX.dpx

Imagen SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Superficie DirectDraw de Microsoft

EPDF.epdf

Formato de documento portátil encapsulado

EPI.epi

Formato de intercambio PostScript encapsulado de Adobe

EPS.eps

PostScript encapsulado de Adobe

EPSF.epsf

PostScript encapsulado de Adobe

EPSI.epsi

Formato de intercambio PostScript encapsulado de Adobe

EPT.ept

PostScript encapsulado con vista previa TIFF

EPT2.ept2

PostScript encapsulado Nivel II con vista previa TIFF

EXR.exr

Imagen de alto rango dinámico (HDR)

FF.ff

Farbfeld

FITS.fits

Sistema de Transporte de Imagen Flexible

GIF.gif

Formato de intercambio de gráficos CompuServe

HDR.hdr

Imagen de alto rango dinámico

HEIC.heic

Contenedor de imagen de alta eficiencia

HRZ.hrz

Televisión de barrido lento

ICO.ico

Icono de Microsoft

ICON.icon

Icono de Microsoft

J2C.j2c

Flujo JPEG-2000

J2K.j2k

Flujo JPEG-2000

JNG.jng

Gráficos JPEG Network

JP2.jp2

Sintaxis de formato de archivo JPEG-2000

JPE.jpe

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

JPEG.jpeg

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

JPG.jpg

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

JPM.jpm

Sintaxis de formato de archivo JPEG-2000

JPS.jps

Formato JPS del Grupo Conjunto de Expertos en Fotografía

JPT.jpt

Sintaxis de formato de archivo JPEG-2000

JXL.jxl

Imagen JPEG XL

MAP.map

Base de datos de imágenes sin costuras multiresolución (MrSID)

MAT.mat

Formato de imagen MATLAB nivel 5

PAL.pal

Mapa de pixeles Palm

PALM.palm

Mapa de pixeles Palm

PAM.pam

Formato común de mapa de bits 2-dimensional

PBM.pbm

Formato de mapa de bits portable (blanco y negro)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Formato Palm Database ImageViewer

PDF.pdf

Formato de Documento Portátil

PDFA.pdfa

Formato de Archivo de Documento Portátil

PFM.pfm

Formato flotante portable

PGM.pgm

Formato de mapa de grises portable (escala de grises)

PGX.pgx

Formato sin comprimir JPEG 2000

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Formato JFIF del Grupo Conjunto de Expertos en Fotografía

PNG.png

Gráficos de red portátiles

PNG00.png00

PNG que hereda profundidad de bits, tipo de color de la imagen original

PNG24.png24

RGB opaco o transparente binario de 24 bits (zlib 1.2.11)

PNG32.png32

RGBA opaco o transparente binario de 32 bits

PNG48.png48

RGB opaco o transparente binario de 48 bits

PNG64.png64

RGBA opaco o transparente binario de 64 bits

PNG8.png8

Índice opaco o transparente binario de 8 bits

PNM.pnm

Anymap portable

PPM.ppm

Formato de mapa de bits portable (color)

PS.ps

Archivo PostScript de Adobe

PSB.psb

Formato de documento grande de Adobe

PSD.psd

Mapa de bits Photoshop de Adobe

RGB.rgb

Muestras de rojo, verde y azul en bruto

RGBA.rgba

Muestras de rojo, verde, azul y alfa en bruto

RGBO.rgbo

Muestras de rojo, verde, azul y opacidad en bruto

SIX.six

Formato de gráficos DEC SIXEL

SUN.sun

Formato Rasterfile de Sun

SVG.svg

Gráficos vectoriales escalables

TIFF.tiff

Formato de archivo de imagen etiquetado

VDA.vda

Imagen Truevision Targa

VIPS.vips

Imagen VIPS

WBMP.wbmp

Imagen inalámbrica Bitmap (nivel 0)

WEBP.webp

Formato de imagen WebP

YUV.yuv

CCIR 601 4:1:1 o 4:2:2

Preguntas frecuentes

¿Cómo funciona esto?

Este convertidor funciona completamente en tu navegador. Cuando seleccionas un archivo, se lee en la memoria y se convierte al formato seleccionado. Luego puedes descargar el archivo convertido.

¿Cuánto tarda en convertir un archivo?

Las conversiones comienzan al instante, y la mayoría de los archivos se convierten en menos de un segundo. Archivos más grandes pueden tardar más.

¿Qué sucede con mis archivos?

Tus archivos nunca se suben a nuestros servidores. Se convierten en tu navegador, y el archivo convertido se descarga luego. Nosotros nunca vemos tus archivos.

¿Qué tipos de archivo puedo convertir?

Soportamos la conversión entre todos los formatos de imagen, incluyendo JPEG, PNG, GIF, WebP, SVG, BMP, TIFF y más.

¿Cuánto cuesta esto?

Este convertidor es completamente gratis, y siempre será gratis. Debido a que funciona en tu navegador, no tenemos que pagar por servidores, así que no necesitamos cobrarte.

¿Puedo convertir múltiples archivos a la vez?

¡Sí! Puedes convertir tantos archivos como quieras a la vez. Sólo selecciona múltiples archivos cuando los agregues.