EXIF-Metadaten für jedes J2C Bild anzeigen

Unbegrenzte Bilder. Dateigrößen bis zu 2,5 GB. Kostenlos, für immer.

Privat und sicher

Alles passiert in Ihrem Browser. Ihre Dateien berühren niemals unsere Server.

Blitzschnell

Kein Hochladen, kein Warten. Konvertieren Sie, sobald Sie eine Datei ablegen.

Wirklich kostenlos

Kein Konto erforderlich. Keine versteckten Kosten. Keine Tricks bei der Dateigröße.

EXIF (Exchangeable Image File Format) ist ein Block von Metadaten wie Belichtung, Objektiv, Zeitstempel und sogar GPS-Daten, die von Kameras und Telefonen in Bilddateien eingebettet werden. Es verwendet ein TIFF-ähnliches Tag-System, das in Formaten wie JPEG und TIFF verpackt ist. Dies ist für die Suche, Sortierung und Automatisierung in Fotobibliotheken unerlässlich, kann aber bei unachtsamer Weitergabe auch zu unbeabsichtigten Datenlecks führen (ExifTool und Exiv2 erleichtern die Überprüfung).

Auf niedriger Ebene verwendet EXIF die Image File Directory (IFD)-Struktur von TIFF wieder und befindet sich in JPEG innerhalb des APP1-Markers (0xFFE1), wodurch ein kleines TIFF-Bild effektiv in einem JPEG-Container verschachtelt wird (JFIF-Übersicht; CIPA-Spezifikationsportal). Die offizielle Spezifikation – CIPA DC-008 (EXIF), derzeit bei 3.x – dokumentiert das IFD-Layout, die Tag-Typen und Einschränkungen (CIPA DC-008; Spezifikationszusammenfassung). EXIF definiert ein dediziertes GPS-Sub-IFD (Tag 0x8825) und ein Interoperabilitäts-IFD (0xA005) (Exif-Tag-Tabellen).

Implementierungsdetails sind wichtig. Typische JPEGs beginnen mit einem JFIF-APP0-Segment, gefolgt von EXIF in APP1. Ältere Lesegeräte erwarten zuerst JFIF, während moderne Bibliotheken beide Formate problemlos parsen (APP-Segment-Hinweise). In der Praxis gehen Parser manchmal von einer APP-Reihenfolge oder Größenbeschränkungen aus, die die Spezifikation nicht vorschreibt, weshalb die Entwickler von Werkzeugen spezifische Verhaltensweisen und Grenzfälle dokumentieren (Exiv2-Metadaten-Leitfaden; ExifTool-Dokumentation).

EXIF ist nicht auf JPEG/TIFF beschränkt. Das PNG-Ökosystem standardisierte den eXIf-Chunk, um EXIF-Daten in PNG-Dateien zu transportieren (die Unterstützung wächst, und die Chunk-Reihenfolge relativ zu IDAT kann in einigen Implementierungen von Bedeutung sein). WebP, ein RIFF-basiertes Format, nimmt EXIF, XMP und ICC in dedizierten Chunks auf (WebP-RIFF-Container; libwebp). Auf Apple-Plattformen bewahrt Image I/O EXIF-Daten bei der Konvertierung in HEIC/HEIF zusammen mit XMP-Daten und Herstellerinformationen (kCGImagePropertyExifDictionary).

Wenn Sie sich jemals gefragt haben, wie Apps Kameraeinstellungen ableiten, ist die EXIF-Tag-Map die Antwort: Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode, und mehr befinden sich in den primären und EXIF-Sub-IFDs (Exif-Tags; Exiv2-Tags). Apple stellt diese über Image I/O-Konstanten wie ExifFNumber und GPSDictionary zur Verfügung. Unter Android liest/schreibt AndroidX ExifInterface EXIF-Daten über JPEG, PNG, WebP und HEIF hinweg.

Ausrichtung, Zeit und andere Tücken

Die Ausrichtung verdient besondere Erwähnung. Die meisten Geräte speichern Pixel „wie aufgenommen“ und zeichnen ein Tag auf, das den Betrachtern mitteilt, wie sie bei der Anzeige gedreht werden sollen. Das ist Tag 274 (Orientation) mit Werten wie 1 (normal), 6 (90° im Uhrzeigersinn), 3 (180°), 8 (270°). Die Nichtbeachtung oder fehlerhafte Aktualisierung dieses Tags führt zu seitlichen Fotos, nicht übereinstimmenden Miniaturansichten und Fehlern beim maschinellen Lernen in nachfolgenden Verarbeitungsschritten (Ausrichtungs-Tag;praktische Anleitung). In Verarbeitungsprozessen wird oft eine Normalisierung vorgenommen, indem Pixel physisch gedreht und Orientation=1 gesetzt wird (ExifTool).

Die Zeitmessung ist kniffliger, als es aussieht. Historische Tags wie DateTimeOriginal haben keine Zeitzone, was grenzüberschreitende Aufnahmen mehrdeutig macht. Neuere Tags fügen Zeitzoneninformationen hinzu – z. B. OffsetTimeOriginal – damit Software DateTimeOriginal plus einen UTC-Offset (z. B. -07:00) für eine korrekte Sortierung und Geokorrelation aufzeichnen kann (OffsetTime*-Tags;Tag-Übersicht).

EXIF vs. IPTC vs. XMP

EXIF koexistiert – und überschneidet sich manchmal – mit IPTC-Fotometadaten (Titel, Ersteller, Rechte, Motive) und XMP, Adobes RDF-basiertem Framework, das als ISO 16684-1 standardisiert ist. In der Praxis gleicht korrekt implementierte Software von der Kamera erstellte EXIF-Daten mit vom Benutzer erstellten IPTC/XMP-Daten ab, ohne eines von beiden zu verwerfen (IPTC-Anleitung;LoC zu XMP;LoC zu EXIF).

Datenschutz und Sicherheit

Datenschutzfragen machen EXIF zu einem kontroversen Thema. Geotags und Geräteseriennummern haben mehr als einmal sensible Orte preisgegeben; ein bekanntes Beispiel ist dasVice-Foto von John McAfee aus dem Jahr 2012, bei dem EXIF-GPS-Koordinaten angeblich seinen Aufenthaltsort verrieten (Wired;The Guardian). Viele soziale Plattformen entfernen die meisten EXIF-Daten beim Hochladen, aber die Implementierungen variieren und ändern sich im Laufe der Zeit. Es ist ratsam, dies zu überprüfen, indem Sie Ihre eigenen Beiträge herunterladen und sie mit einem entsprechenden Tool untersuchen (Twitter-Medienhilfe;Facebook-Hilfe;Instagram-Hilfe).

Sicherheitsforscher beobachten auch EXIF-Parser genau. Schwachstellen in weit verbreiteten Bibliotheken (z. B. libexif) umfassten Pufferüberläufe und Out-of-Bounds-Lesevorgänge, die durch fehlerhafte Tags ausgelöst wurden. Diese sind leicht zu erstellen, da EXIF ein strukturiertes Binärformat an einem vorhersagbaren Ort ist (Hinweise;NVD-Suche). Es ist wichtig, Ihre Metadatenbibliotheken auf dem neuesten Stand zu halten und Bilder in einer isolierten Umgebung (Sandbox) zu verarbeiten, wenn sie aus nicht vertrauenswürdigen Quellen stammen.

Praktische Tipps

  • Verwalten Sie Standortinformationen bewusst: Deaktivieren Sie das Geotagging der Kamera gegebenenfalls oder entfernen Sie GPS-Daten beim Export. Bewahren Sie ein privates Original auf, wenn Sie die Daten später benötigen (ExifTool;Exiv2 CLI).
  • Normalisieren Sie die Ausrichtung und Zeitstempel in den Verarbeitungsprozessen, idealerweise durch Schreiben der physischen Drehung und Entfernen mehrdeutiger Tags (oder Hinzufügen von OffsetTime*). (Ausrichtung;OffsetTime*).
  • Bewahren Sie beschreibende Metadaten (Credits/Rechte) auf, indem Sie EXIF↔IPTC↔XMP gemäß den aktuellen IPTC-Richtlinien zuordnen und XMP für reichhaltige, erweiterbare Felder bevorzugen.
  • Überprüfen Sie bei PNG/WebP/HEIF, ob Ihre Bibliotheken die modernen EXIF/XMP-Speicherorte tatsächlich lesen/schreiben; gehen Sie nicht von einer Parität mit JPEG aus (PNG eXIf;WebP-Container;Image I/O).
  • Halten Sie Abhängigkeiten auf dem neuesten Stand, da Metadaten ein häufiges Ziel für Angriffe auf Parser sind (libexif-Hinweise).

Sorgfältig verwendet, ist EXIF ein Schlüsselelement, das Fotokataloge, Rechte-Workflows und Computer-Vision-Pipelines antreibt. Naiv verwendet, wird es zu einer digitalen Spur, die Sie möglicherweise nicht hinterlassen möchten. Die gute Nachricht: Das Ökosystem – Spezifikationen, Betriebssystem-APIs und Tools – gibt Ihnen die Kontrolle, die Sie benötigen (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).

Weiterführende Literatur & Referenzen

Häufig gestellte Fragen

Was sind EXIF-Daten?

EXIF-Daten (Exchangeable Image File Format) sind eine Sammlung von Metadaten zu einem Foto, wie Kameraeinstellungen, Aufnahmezeitpunkt und, bei aktiviertem GPS, auch der Standort.

Wie kann ich EXIF-Daten anzeigen?

Die meisten Bildbetrachter und -editoren (z. B. Adobe Photoshop, Windows Fotoanzeige) ermöglichen die Anzeige von EXIF-Daten. In der Regel genügt es, das Eigenschaften- oder Informationsfenster der Datei zu öffnen.

Können EXIF-Daten bearbeitet werden?

Ja, EXIF-Daten können mit spezieller Software wie Adobe Photoshop, Lightroom oder einfach zu bedienenden Online-Tools bearbeitet werden. Damit lassen sich bestimmte Metadatenfelder anpassen oder löschen.

Stellen EXIF-Daten ein Datenschutzrisiko dar?

Ja. Bei aktiviertem GPS können in den EXIF-Metadaten gespeicherte Standortdaten sensible geografische Informationen preisgeben. Es wird daher empfohlen, diese Daten vor der Weitergabe von Fotos zu entfernen oder zu anonymisieren.

Wie kann ich EXIF-Daten entfernen?

Viele Programme ermöglichen das Entfernen von EXIF-Daten. Dieser Vorgang wird oft als 'Metadaten-Stripping' bezeichnet. Es gibt auch Online-Tools, die diese Funktion anbieten.

Behalten soziale Netzwerke EXIF-Daten?

Die meisten sozialen Netzwerke wie Facebook, Instagram und Twitter entfernen EXIF-Daten automatisch von Bildern, um die Privatsphäre der Nutzer zu schützen.

Welche Informationen enthalten EXIF-Daten?

EXIF-Daten können unter anderem das Kameramodell, Datum und Uhrzeit der Aufnahme, Brennweite, Belichtungszeit, Blende, ISO-Einstellung, Weißabgleich und den GPS-Standort enthalten.

Warum sind EXIF-Daten für Fotografen nützlich?

Für Fotografen sind EXIF-Daten eine wertvolle Hilfe, um die genauen Einstellungen einer Aufnahme zu verstehen. Diese Informationen helfen, Techniken zu verbessern und ähnliche Bedingungen in Zukunft zu reproduzieren.

Enthalten alle Bilder EXIF-Daten?

Nein, nur Bilder, die mit Geräten aufgenommen wurden, die EXIF-Metadaten unterstützen, wie Digitalkameras und Smartphones, enthalten diese Daten.

Gibt es ein Standardformat für EXIF-Daten?

Ja, EXIF-Daten folgen dem von der Japan Electronic Industries Development Association (JEIDA) festgelegten Standard. Einige Hersteller können jedoch zusätzliche, proprietäre Informationen hinzufügen.

Was ist das J2C Format?

JPEG-2000 Codestream

Das J2C-Bildformat, auch bekannt als JPEG 2000 Code Stream, ist Teil der JPEG 2000-Normenreihe. JPEG 2000 selbst ist ein Bildkomprimierungsstandard und ein Codierungssystem, das vom Joint Photographic Experts Group Committee mit der Absicht erstellt wurde, den ursprünglichen JPEG-Standard abzulösen. Der JPEG 2000-Standard wurde mit dem Ziel festgelegt, ein neues Bildcodierungssystem mit hoher Flexibilität und verbesserter Leistung gegenüber JPEG bereitzustellen. Es wurde entwickelt, um einige Einschränkungen des JPEG-Formats zu beheben, wie z. B. schlechte Leistung bei niedrigen Bitraten und mangelnde Skalierbarkeit.

JPEG 2000 verwendet die Wavelet-Transformation im Gegensatz zur diskreten Kosinustransformation (DCT), die im ursprünglichen JPEG-Standard verwendet wird. Die Wavelet-Transformation ermöglicht einen höheren Grad an Skalierbarkeit und die Möglichkeit, eine verlustfreie Komprimierung durchzuführen, was bedeutet, dass das Originalbild aus den komprimierten Daten perfekt rekonstruiert werden kann. Dies ist ein erheblicher Vorteil gegenüber der verlustbehafteten Komprimierung des ursprünglichen JPEG, bei der während des Komprimierungsprozesses dauerhaft einige Bildinformationen verloren gehen.

Das J2C-Dateiformat bezieht sich speziell auf den Codestream von JPEG 2000. Dieser Codestream sind die eigentlichen codierten Bilddaten, die in verschiedene Containerformate wie JP2 (JPEG 2000 Part 1-Dateiformat), JPX (JPEG 2000 Part 2, erweitertes Dateiformat) und MJ2 (Motion JPEG 2000-Dateiformat für Video) eingebettet werden können. Das J2C-Format sind im Wesentlichen die rohen, codierten Bilddaten ohne zusätzliche Metadaten oder Struktur, die von einem Containerformat bereitgestellt werden könnten.

Eine der Hauptfunktionen des J2C-Formats ist die Unterstützung sowohl verlustfreier als auch verlustbehafteter Komprimierung innerhalb derselben Datei. Dies wird durch die Verwendung einer reversiblen Wavelet-Transformation für verlustfreie Komprimierung und einer irreversiblen Wavelet-Transformation für verlustbehaftete Komprimierung erreicht. Die Wahl zwischen verlustfreier und verlustbehafteter Komprimierung kann innerhalb des Bildes pro Kachel getroffen werden, sodass je nach Wichtigkeit des Inhalts eine Mischung aus hochwertigen und minderwertigen Bereichen möglich ist.

Das J2C-Format ist außerdem hochgradig skalierbar und unterstützt eine Funktion, die als „progressive Dekodierung“ bezeichnet wird. Dies bedeutet, dass zuerst eine Version des Bildes mit niedriger Auflösung decodiert und angezeigt werden kann, gefolgt von aufeinanderfolgenden Schichten mit höherer Auflösung, wenn mehr Bilddaten empfangen oder verarbeitet werden. Dies ist besonders nützlich für Netzwerkanwendungen, bei denen die Bandbreite möglicherweise begrenzt ist, da es eine schnelle Vorschau des Bildes ermöglicht, während das vollständige Bild mit hoher Auflösung noch heruntergeladen wird.

Ein weiterer wichtiger Aspekt des J2C-Formats ist die Unterstützung von Regionen von Interesse (ROI). Mit der ROI-Codierung können bestimmte Teile des Bildes in einer höheren Qualität als der Rest des Bildes codiert werden. Dies ist nützlich, wenn bestimmte Bereiche des Bildes wichtiger sind und mit höherer Wiedergabetreue erhalten werden müssen, wie z. B. Gesichter in einem Porträt oder Text in einem Dokument.

Das J2C-Format enthält außerdem ausgeklügelte Fehlertoleranzfunktionen, die es robuster gegen Datenverlust während der Übertragung machen. Dies wird durch die Verwendung von Fehlerkorrekturcodes und die Strukturierung des Codestreams erreicht, sodass verlorene Pakete wiederhergestellt werden können. Dies macht J2C zu einer guten Wahl für die Übertragung von Bildern über unzuverlässige Netzwerke oder die Speicherung von Bildern in einer Weise, die die Auswirkungen potenzieller Datenbeschädigung minimiert.

Die Farbraumbehandlung in J2C ist ebenfalls fortschrittlicher als im ursprünglichen JPEG. Das Format unterstützt eine Vielzahl von Farbräumen, darunter Graustufen, RGB, YCbCr und andere. Es ermöglicht außerdem die Verwendung verschiedener Farbräume in verschiedenen Kacheln desselben Bildes, was zusätzliche Flexibilität bei der Codierung und Darstellung von Bildern bietet.

Die Komprimierungseffizienz des J2C-Formats ist eine weitere Stärke. Durch die Verwendung der Wavelet-Transformation und fortschrittlicher Entropiecodierungstechniken wie der arithmetischen Codierung kann J2C höhere Komprimierungsverhältnisse als das ursprüngliche JPEG erzielen, insbesondere bei niedrigeren Bitraten. Dies macht es zu einer attraktiven Option für Anwendungen, bei denen Speicherplatz oder Bandbreite knapp sind, wie z. B. bei Mobilgeräten oder Webanwendungen.

Trotz seiner vielen Vorteile hat das J2C-Format im Vergleich zum ursprünglichen JPEG-Format keine weit verbreitete Akzeptanz gefunden. Dies liegt zum Teil an der größeren Komplexität des JPEG 2000-Standards, der mehr Rechenressourcen zum Codieren und Decodieren von Bildern benötigt. Darüber hinaus ist das ursprüngliche JPEG-Format in vielen Systemen tief verwurzelt und verfügt über ein umfangreiches Ökosystem an Software- und Hardwareunterstützung, was es für einen neuen Standard schwierig macht, Fuß zu fassen.

In bestimmten Fachgebieten ist das J2C-Format jedoch aufgrund seiner spezifischen Eigenschaften zur bevorzugten Wahl geworden. In der medizinischen Bildgebung beispielsweise machen die Möglichkeit der verlustfreien Komprimierung und die Unterstützung von Bildern mit hohem Dynamikbereich und hoher Bittiefe J2C zu einem idealen Format. In ähnlicher Weise werden in der digitalen Kino- und Videoarchivierung die hohe Qualität bei hohen Komprimierungsverhältnissen und die Skalierbarkeitsfunktionen des Formats sehr geschätzt.

Der Codierungsprozess eines J2C-Bildes umfasst mehrere Schritte. Zuerst wird das Bild in Kacheln unterteilt, die unabhängig voneinander verarbeitet werden können. Diese Kachelung ermöglicht eine parallele Verarbeitung und kann die Effizienz der Codierungs- und Decodierungsprozesse verbessern. Jede Kachel wird dann entweder mit einer reversiblen oder einer irreversiblen Wavelet-Transformation transformiert, je nachdem, ob eine verlustfreie oder verlustbehaftete Komprimierung gewünscht wird.

Nach der Wavelet-Transformation werden die Koeffizienten quantisiert, was die Reduzierung der Genauigkeit der Wavelet-Koeffizienten beinhaltet. Bei verlustfreier Komprimierung wird dieser Schritt übersprungen, da die Quantisierung Fehler einführen würde. Die quantisierten Koeffizienten werden dann mit arithmetischer Codierung entropiecodiert, wodurch die Größe der Daten durch Nutzung der statistischen Eigenschaften des Bildinhalts reduziert wird.

Der letzte Schritt im Codierungsprozess ist die Assemblierung des Codestreams. Die entropiecodierten Daten für jede Kachel werden mit Headerinformationen kombiniert, die das Bild und seine Codierung beschreiben. Dazu gehören Informationen über die Größe des Bildes, die Anzahl der Kacheln, die verwendete Wavelet-Transformation, die Quantisierungsparameter und alle anderen relevanten Daten. Der resultierende Codestream kann dann in einer J2C-Datei gespeichert oder in ein Containerformat eingebettet werden.

Die Decodierung eines J2C-Bildes beinhaltet im Wesentlichen die Umkehrung des Codierungsprozesses. Der Codestream wird geparst, um die Headerinformationen und die entropiecodierten Daten für jede Kachel zu extrahieren. Die entropiecodierten Daten werden dann decodiert, um die quantisierten Wavelet-Koeffizienten wiederherzustellen. Wenn das Bild mit verlustbehafteter Komprimierung komprimiert wurde, werden die Koeffizienten dann dequantisiert, um ihre ursprünglichen Werte anzunähern. Die inverse Wavelet-Transformation wird angewendet, um das Bild aus den Wavelet-Koeffizienten zu rekonstruieren, und die Kacheln werden zusammengefügt, um das endgültige Bild zu bilden.

Zusammenfassend lässt sich sagen, dass das J2C-Bildformat ein leistungsstarkes und flexibles Bildcodierungssystem ist, das gegenüber dem ursprünglichen JPEG-Format mehrere Vorteile bietet, darunter eine bessere Komprimierungseffizienz, Skalierbarkeit und die Möglichkeit, eine verlustfreie Komprimierung durchzuführen. Obwohl es nicht den gleichen Grad an Allgegenwart wie JPEG erreicht hat, eignet es sich gut für Anwendungen, die qualitativ hochwertige Bilder erfordern oder spezifische technische Anforderungen haben. Da sich die Technologie weiterentwickelt und der Bedarf an ausgefeilteren Bildcodierungssystemen wächst, könnte das J2C-Format in verschiedenen Bereichen eine zunehmende Akzeptanz finden.

Unterstützte Formate

AAI.aai

AAI Dune Bild

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Bildformat

AVS.avs

AVS X Bild

BAYER.bayer

Rohes Bayer-Bild

BMP.bmp

Microsoft Windows Bitmap-Bild

CIN.cin

Cineon-Bilddatei

CLIP.clip

Bild-Clip-Maske

CMYK.cmyk

Rohcyan-, Magenta-, Gelb- und Schwarzproben

CMYKA.cmyka

Rohcyan-, Magenta-, Gelb-, Schwarz- und Alpha-Proben

CUR.cur

Microsoft-Symbol

DCX.dcx

ZSoft IBM PC mehrseitige Paintbrush

DDS.dds

Microsoft DirectDraw-Oberfläche

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) Bild

DXT1.dxt1

Microsoft DirectDraw-Oberfläche

EPDF.epdf

Eingekapseltes tragbares Dokumentenformat

EPI.epi

Adobe Encapsulated PostScript Interchange-Format

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange-Format

EPT.ept

Eingekapseltes PostScript mit TIFF-Vorschau

EPT2.ept2

Eingekapseltes PostScript Level II mit TIFF-Vorschau

EXR.exr

Bild mit hohem Dynamikbereich (HDR)

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Flexibles Bildtransport-System

GIF.gif

CompuServe-Grafikaustauschformat

GIF87.gif87

CompuServe-Grafikaustauschformat (Version 87a)

GROUP4.group4

Rohes CCITT Group4

HDR.hdr

Bild mit hohem Dynamikbereich (HDR)

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Microsoft-Symbol

ICON.icon

Microsoft-Symbol

IPL.ipl

IP2 Location Image

J2C.j2c

JPEG-2000 Codestream

J2K.j2k

JPEG-2000 Codestream

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 Dateiformat Syntax

JPC.jpc

JPEG-2000 Codestream

JPE.jpe

Joint Photographic Experts Group JFIF-Format

JPEG.jpeg

Joint Photographic Experts Group JFIF-Format

JPG.jpg

Joint Photographic Experts Group JFIF-Format

JPM.jpm

JPEG-2000 Dateiformat Syntax

JPS.jps

Joint Photographic Experts Group JPS-Format

JPT.jpt

JPEG-2000 Dateiformat Syntax

JXL.jxl

JPEG XL-Bild

MAP.map

Multi-Resolution Seamless Image Database (MrSID)

MAT.mat

MATLAB-Level-5-Bildformat

PAL.pal

Palm-Pixmap

PALM.palm

Palm-Pixmap

PAM.pam

Allgemeines zweidimensionales Bitmap-Format

PBM.pbm

Portable Bitmap-Format (schwarz-weiß)

PCD.pcd

Photo-CD

PCDS.pcds

Photo-CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer-Format

PDF.pdf

Portable Document Format

PDFA.pdfa

Portable Document Archive-Format

PFM.pfm

Portable Float-Format

PGM.pgm

Portable Graymap-Format (Graustufen)

PGX.pgx

JPEG-2000 unkomprimiertes Format

PICON.picon

Persönliches Icon

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF-Format

PNG.png

Portable Network Graphics

PNG00.png00

PNG mit Bit-Tiefe und Farbtyp vom Originalbild erben

PNG24.png24

Opakes oder binäres transparentes 24-Bit-RGB (zlib 1.2.11)

PNG32.png32

Opakes oder binäres transparentes 32-Bit-RGBA

PNG48.png48

Opakes oder binäres transparentes 48-Bit-RGB

PNG64.png64

Opakes oder binäres transparentes 64-Bit-RGBA

PNG8.png8

Opakes oder binäres transparentes 8-Bit-Indexed

PNM.pnm

Portable Anymap

PPM.ppm

Portable Pixmap-Format (Farbe)

PS.ps

Adobe PostScript-Datei

PSB.psb

Adobe Large Document-Format

PSD.psd

Adobe Photoshop-Bitmap

RGB.rgb

Rohdaten für rote, grüne und blaue Proben

RGBA.rgba

Rohdaten für rote, grüne, blaue und Alpha-Proben

RGBO.rgbo

Rohdaten für rote, grüne, blaue und Opazität-Proben

SIX.six

DEC SIXEL-Grafikformat

SUN.sun

Sun Rasterfile

SVG.svg

Skalierbare Vektorgrafiken

SVGZ.svgz

Komprimierte skalierbare Vektorgrafiken

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision-Targa-Bild

VIPS.vips

VIPS-Bild

WBMP.wbmp

Wireless Bitmap (Level 0) Bild

WEBP.webp

WebP-Bildformat

YUV.yuv

CCIR 601 4:1:1 oder 4:2:2

Häufig gestellte Fragen

Wie funktioniert das?

Dieser Konverter läuft vollständig in Ihrem Browser. Wenn Sie eine Datei auswählen, wird sie in den Speicher gelesen und in das ausgewählte Format konvertiert. Sie können die konvertierte Datei dann herunterladen.

Wie lange dauert die Konvertierung einer Datei?

Die Konvertierung beginnt sofort, und die meisten Dateien werden in weniger als einer Sekunde konvertiert. Größere Dateien können länger dauern.

Was passiert mit meinen Dateien?

Ihre Dateien werden niemals auf unsere Server hochgeladen. Sie werden in Ihrem Browser konvertiert, und die konvertierte Datei wird dann heruntergeladen. Wir sehen Ihre Dateien niemals.

Welche Dateitypen kann ich konvertieren?

Wir unterstützen die Konvertierung zwischen allen Bildformaten, einschließlich JPEG, PNG, GIF, WebP, SVG, BMP, TIFF und mehr.

Wie viel kostet das?

Dieser Konverter ist völlig kostenlos und wird immer kostenlos sein. Da er in Ihrem Browser läuft, müssen wir nicht für Server bezahlen, also müssen wir Ihnen auch nichts berechnen.

Kann ich mehrere Dateien auf einmal konvertieren?

Ja! Sie können so viele Dateien auf einmal konvertieren, wie Sie möchten. Wählen Sie einfach mehrere Dateien aus, wenn Sie sie hinzufügen.