OCR любого PNG
Перетащите и отпустите или нажмите для выбора
Конфиденциально и безопасно
Все происходит в вашем браузере. Ваши файлы никогда не попадают на наши серверы.
Молниеносно
Никаких загрузок, никаких ожиданий. Конвертируйте в тот момент, когда вы перетаскиваете файл.
Действительно бесплатно
Не требуется учетная запись. Никаких скрытых платежей. Никаких уловок с размером файла.
Оптическое распознавание символов (OCR) преобразует изображения текста — сканы, фотографии со смартфона, PDF-файлы — в машиночитаемые строки и, все чаще, в структурированные данные. Современное OCR — это конвейер, который очищает изображение, находит текст, читает его и экспортирует богатые метаданные, чтобы последующие системы могли искать, индексировать или извлекать поля. Два широко используемых стандарта вывода: hOCR, микроформат HTML для текста и макета, и ALTO XML, схема, ориентированная на библиотеки/архивы; оба сохраняют позиции, порядок чтения и другие подсказки макета и поддерживаются популярными движками, такими как Tesseract.
Краткий обзор конвейера
Предварительная обработка. Качество OCR начинается с очистки изображения: преобразования в оттенки серого, удаления шума, пороговой обработки (бинаризации) и выравнивания. Канонические учебные пособия по OpenCV охватывают глобальную, адаптивную и пороговую обработку Оцу — основные методы для документов с неравномерным освещением или бимодальными гистограммами. Когда освещение меняется в пределах страницы (подумайте о снимках с телефона), адаптивные методы часто превосходят один глобальный порог; Оцу автоматически выбирает порог, анализируя гистограмму. Коррекция наклона не менее важна: выравнивани е на основе преобразования Хафа (преобразование Хафа для линий) в паре с бинаризацией Оцу является распространенным и эффективным рецептом в производственных конвейерах предварительной обработки.
Обнаружение и распознавание. OCR обычно делится на обнаружение текста (где находится текст?) и распознавание текста (что он говорит?). В естественных сценах и многих сканах полностью сверточные детекторы, такие как EAST , эффективно предсказывают четырехугольники на уровне слов или строк без тяжелых этапов предложения и реализованы в общих наборах инструментов (например, учебное пособие по обнаружению текста в OpenCV). На сложных страницах (газеты, формы, книги) важны сегментация строк/областей и определение порядка чтения:Kraken реализует традиционную сегментацию зон/строк и нейронную сегментацию базовой линии с явной поддержкой различных письменностей и направлений (слева направо/справа налево/вертикально).
Модели распознавания. Классическая рабочая лошадка с открытым исходным кодом Tesseract (с открытым исходным кодом от Google, с корнями в HP) эволюционировала от классификатора символов до распознавателя последовательностей на основе LSTM и может выдавать PDF с возможностью поиска, выходные данные, дружественные к hOCR/ALTO, и многое другое из командной строки. Современные распознаватели полагаются на моделирование последовательностей без предварительно сегментированных символов. Коннективистская временная классификация (CTC) остается основополагающей, изучая выравнивания между последовательностями входных признаков и строками выходных меток; она широко используется в конвейерах для распознавания рукописного ввода и текста на сцене.
В последние несколько лет трансформеры изменили OCR. TrOCR использует кодировщик Vision Transformer и декодер Text Transformer, обученный на больших синтетических корпусах, а затем доработанный на реальных данных, с высокой производительностью на тестах печатного, рукописного и сценического текста (см. также документацию Hugging Face). Параллельно некоторые системы обходят OCR для последующего понимания: Donut (Document Understanding Transformer) — это кодировщик-декодер без OCR, который напрямую выводит структурированные ответы (например, JSON «ключ-значение») из изображений документов (репозиторий, карточка модели), избегая накопления ошибок, когда отдельный шаг OCR передает данные в систему извлечения информации.
Движки и библиотеки
Если вам нужно готовое решение для чтения текста на многих языках, EasyOCR предлагает простой API с более чем 80 языковыми моделями, возвращающий рамки, текст и достоверность — удобно для прототипов и нелатинских письменностей. Для исторических документов Kraken отличается сегментацией базовой линии и порядком чтения с учетом письменности; для гибкого обучения на уровне строк Calamari основан на наследии Ocropy (Ocropy) с распознавателями (multi-)LSTM+CTC и CLI для тонкой настройки пользовательских моделей.
Наборы данных и тесты
Обобщение зависит от данных. Для рукописного ввода база данных рукописного ввода IAM предоставляет разнообразные по авторам английские предложения для обучения и оценки; это давний эталонный набор для распознавания строк и слов. Для текста на сцене COCO-Text наложил обширные аннотации на MS-COCO с метками для печатного/рукописного, разборчивого/неразборчивого, письменности и полных транскрипций (см. также оригинальную ст раницу проекта). Эта область также в значительной степени зависит от синтетического предварительного обучения: SynthText in the Wild визуализирует текст на фотографиях с реалистичной геометрией и освещением, предоставляя огромные объемы данных для предварительного обучения детекторов и распознавателей (ссылка на код и данные).
Соревнования под эгидой ICDAR’s Robust Reading сохраняют обоснованность оценки. Последние задачи подчеркивают сквозное обнаружение/чтение и включают связывание слов во фразы, с официальным кодом, сообщающим точность/полноту/F-меру, пересечение над объединением (IoU) и метрики расстояния редактирования на уровне символов, что отражает то, что должны отслеживать практики.
Форматы вывода и последующее использование
OCR редко заканчивается простым текстом. Архивы и цифровые библиотеки предпочитают ALTO XML , потому что он кодирует физический макет (блоки/строки/слова с координатами) вместе с содержимым, и он хорошо сочетается с упаковкой METS. Микроформат hOCR , напротив, встраивает ту же идею в HTML/CSS, используя классы, такие как ocr_line и ocrx_word, что упрощает отображение, редактирование и преобразование с помощью веб-инструментов. Tesseract предоставляет оба варианта, например, генерируя hOCR или PDF с возможностью поиска прямо из командной строки (руководство по выводу PDF); оболочки Python, такие как pytesseract , добавляют удобства. Существуют преобразователи для перевода между hOCR и ALTO, когда в репозиториях есть фиксированные стандарты приема — см. этот тщательно подобранный список инструментов для формата файлов OCR.
Практическое руководство
- Начните с данных и чистоты. Если ваши изображения — это фотографии с телефона или сканы смешанного качества, вложитесь в пороговую обработку (адаптивную и Оцу) и выравнивание (Хафа) перед любой настройкой модели. Вы часто получите больше от надежного рецепта предварительной обработки, чем от замены распознавателей.
- Выберите правильный детектор. Для отсканированных страниц с обычными столбцами может быть достаточно сегментатора страниц (зоны → строки); для естественных изображений детекторы одного прохода, такие как EAST , являются сильными базовыми линиями и подключаются ко многим наборам инструментов (пример OpenCV).
- Выберите распознаватель, который соответствует вашему тексту. Для печатной латиницы Tesseract (LSTM/OEM) надежен и быстр; для нескольких письменностей или быстрых прототипов EasyOCR продуктивен; для рукописного ввода или исторических шрифтов рассмотрите Kraken или Calamari и планируйте тонкую настройку. Если вам нужна тесная связь с пониманием документов (извлечение пар «ключ-значение», VQA), оцените TrOCR (OCR) по сравнению с Donut (без OCR) на вашей схеме — Donut может устранить целый шаг интеграции.
- Измеряйте то, что имеет значение. Для сквозных систем сообщайте об обнаружении F-мера и распознавании CER/WER (оба основаны на расстоянии редактирования Левенштейна ; см. CTC); для задач с интенсивным использованием макета отслеживайте IoU/плотность и нормализованное расстояние редактирования на уровне символов, как в наборах для оценки ICDAR RRC .
- Экспортируйте богатые выходные данные. Предпочитайте hOCR /ALTO (или оба), чтобы сохранить координаты и порядок чтения — это жизненно важно для выделения результатов поиска, извлечения таблиц/полей и происхождения. CLI Tesseract и pytesseract делают это одной строкой.
Взгляд в будущее
Самая сильная тенденция — это конвергенция: обнаружение, распознавание, языковое моделирование и даже декодирование для конкретных задач объединяются в единые стеки трансформеров. Предварительное обучение на больших синтетических корпусах остается мультипликатором силы. Модели без OCR будут агрессивно конкурировать везде, где целью являются структурированные выходные данные, а не дословные транскрипции. Ожидайте также гибридных развертываний: легкий детектор плюс распознаватель в стиле TrOCR для длинного текста и модель в стиле Donut для форм и квитанций.
Дополнительная литература и инструменты
Tesseract (GitHub) · Документация Tesseract · Спецификация hOCR · Фон ALTO · Детектор EAST · Обнаружение текста OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Рукописный ввод IAM · Инструменты формата файлов OCR · EasyOCR
Часто задаваемые вопросы
Что такое OCR?
Оптическое распознавание символов (OCR) - это технология, используемая для преобразования различных типов документов, таких как отсканированные бумажные документы, PDF-файлы или изображения, снятые цифровой камерой, в данные, которые можно редактировать и искать.
Как работает OCR?
OCR сканирует входное изображение или документ, разбирает изображение на отдельные символы, а затем сравнивает каждый символ с базой данных форм символов, используя распознавание по образцу или распознавание по признакам.
Какие практические применения у OCR?
OCR используется в различных отраслях и приложениях, включая цифровизацию печатных документов, использование услуг перевода текста в речь, автоматизацию процесса ввода данных и помощь людям с нарушениями зрения в более качественном взаимодействии с текстом.
OCR всегда на 100% точен?
Несмотря на значительные усовершенствования технологии OCR, она не абсолютно надежна. Точность может варьироваться в зависимости от качества исходного документа и конкретных характеристик используемого ПО OCR.
Может ли OCR распознавать рукописный текст?
Хотя OCR в основном предназначен для распознавания печатного текста, некоторые продвинутые системы OCR также могут распознавать чистописание. Однако точность распознавания рукописного текста обычно ниже из-за вариативности индивидуальных стилей письма.
Может ли OCR обрабатывать несколько языков?
Да, многие программы OCR могут распознавать множество языков. Однако следует убедиться, что используемое вами программное обеспечение поддерживает конкретный язык.
В чем разница между OCR и ICR?
OCR - это аббревиатура от Optical Character Recognition (оптическое распознавание символов), которое используется для распознавания печатного текста, в то время как ICR, или Intelligent Character Recognition (интеллектуальное распознавание символов), это более продвинутая технология, которая используется для распознавания рукописного те кста.
Может ли OCR обрабатывать все шрифты и размеры текста?
OCR наиболее эффективен при обработке четких, легко читаемых шрифтов и стандартных размеров текста. Хотя он способен распознавать различные шрифты и размеры, его точность может снизиться при обработке нестандартных шрифтов или очень мелкого текста.
Каковы ограничения технологии OCR?
У OCR может быть проблемы при обработке документов с низким разрешением, сложных шрифтов, текста с плохим качеством печати, рукописного текста или документов, где текст плохо сочетается с фоном. Кроме того, хотя OCR может распознавать многие языки, он может не покрывать все языки идеально.
Может ли OCR сканировать цветной текст или цветной фон?
Да, OCR может сканировать цветной текст и фоны, хотя он наиболее эффективен при работе с комбинациями цветов с высоким контрастом, такими как черный текст на белом фоне. Если контраст между цветом текста и фона недостаточен, точность может снизиться.
Что такое формат PNG?
Портативная графика сети
Эволюция форматов изображений за последние годы была значительной, обусловленной растущим спросом на более высокое визуальное качество и более эффективные методы сжатия данных. Среди этих разработок выделяется формат изображений PLASMA, предлагающий уникальное сочетание высокой степени сжатия, поддержку широкой цветовой гаммы и адаптивный подход к кодированию изображений, что делает его особенно эффективным как для веб-использования, так и для дисплеев высокой четкости. Одной из ключевых характеристик, отличающих PLASMA от других форматов изображений, является его передовой алгоритм сжатия, который предназначен для уменьшения размера файла без ущерба для качества изображения.
Технология сжатия, лежащая в основе PLASMA, основана на сложном методе, известном как «перцептивное квантование», который использует характеристики человеческой зрительной системы. В отличие от традиционных методов сжатия, которые равномерно уменьшают данные по всему изображению, перцептивное квантование выборочно сжимает области изображения, где глаз с меньшей вероятностью заметит различия. Этот подход позволяет изображениям PLASMA поддерживать высокий уровень визуальной достоверности даже при более низких битрейтах, эффективно балансируя эффективность сжатия и качество изображения.
Еще одной примечательной особенностью формата PLASMA является его поддержка широкой цветовой гаммы. Это означает, что он может точно отображать более широкий спектр цветов по сравнению со старыми форматами изображений. Эта возможность имеет решающее значение для профессиональной фотографии, цифрового искусства и любых приложений, где точность цветопередачи имеет первостепенное значение. PLASMA достигает этого путем включения расширенных цветовых профилей, которые поддерживают новейшие цветовые пространства, такие как Adobe RGB и ProPhoto RGB, гарантируя, что отображаемые цвета максимально соответствуют оригиналу.
Адаптивное кодирование является еще одним краеугольным камнем дизайна формата изображения PLASMA. Эта технология позволяет формату динамически регулировать способ кодирования данных в зависимости от содержимого изображения. Например, он может распознавать и эффективно кодировать повторяющиеся шаблоны или текстуры, применяя при этом более детальное кодирование к сложным или очень детализированным областям. Эта адаптивность не только повышает сжатие, но и гарантирует сохранение важных деталей, что делает его отличным выбором для широкого спектра приложений, от веб-изображений до детальных цифровых картин.
Помимо своих технических преимуществ, PLASMA также включает в себя несколько функций, направленных на улучшение пользовательского опыта и удобства использования. Среди них есть опция прогрессивной загрузки, которая позволяет изначально отображать изображения с более низким качеством, а затем постепенно увеличивать детализацию. Эта функция особенно полезна для веб-использования, позволяя веб-сайтам загружаться быстрее, но при этом в конечном итоге отображать изображения в полном качестве. Прогрессивная загрузка также делает PLASMA хорошим выбором для мобильных сред, где пропускная способность может быть ограничена, а время загрузки должно быть максимально коротким.
Безопасность и защита авторских прав также являются неотъемлемой частью формата PLASMA. Поскольку цифровым контентом все чаще делятся и повторно используют, нарушение авторских прав стало серьезной проблемой для создателей. PLASMA решает эту проблему с помощью встроенных цифровых водяных знаков и возможностей уведомления об авторских правах. Эти функции позволяют создателям встраивать невидимые водяные знаки или видимые уведомления об авторских правах непосредственно в файл изображения, добавляя дополнительный уровень защиты и гарантируя, что информация сохраняется даже при сжатии изображения.
Совместимость PLASMA с существующими технологиями и платформами является еще одним важным аспектом его дизайна. Понимая важность взаимодействия, разработчики PLASMA позаботились о том, чтобы его можно было легко интегрировать с т екущими веб-стандартами и программным обеспечением для редактирования изображений. Эти усилия включают разработку плагинов и расширений для популярного графического программного обеспечения, что упрощает для художников и дизайнеров внедрение PLASMA в свои рабочие процессы. Более того, веб-браузеры и мобильные приложения могут легко поддерживать изображения PLASMA без существенных изменений, что способствует его широкому внедрению.
В основе PLASMA лежит уникальная структура файлов, которая оптимизирует как хранение, так и эффективность доступа. Формат разработан для разделения данных изображения на слои и сегменты, что позволяет получить детальный доступ к определенным частям изображения без необходимости декодирования всего файла. Эта структура не только сокращает время загрузки, но и обеспечивает расширенные функции, такие как масштабируемые разрешения и выборочное редактирование. Например, пользователь может отрегулировать цветовой баланс определенного сегмента изображения, не затрагивая остальные, что обеспечивает беспрецедентный контроль и гибкость.
Формат изображения PLASMA также реш ает проблемы обработки изображений с высоким динамическим диапазоном (HDR), что требует обработки широкого диапазона уровней яркости, от самых темных теней до самых ярких бликов. Алгоритмы кодирования PLASMA специально разработаны для эффективного управления расширенными уровнями яркости, характерными для HDR-контента. Эта возможность гарантирует, что изображения PLASMA могут точно воспроизводить весь диапазон яркости и контрастности, наблюдаемый в реальных сценах, что делает его особенно подходящим для дисплеев следующего поколения и профессиональной фотографии.
Усилия по стандартизации и продвижению внедрения PLASMA продолжаются, возглавляемые консорциумом лидеров отрасли в области фотографии, цифрового искусства и технологий. Это сотрудничество направлено на то, чтобы установить PLASMA в качестве универсального формата, который может удовлетворить разнообразные потребности различных отраслей, одновременно расширяя границы того, что можно достичь в области цифровой обработки изображений. Работая вместе, эти заинтересованные стороны надеются создать экосистему, в которой PLASMA станет синонимом вы сококачественных, эффективных и универсальных цифровых изображений.
Одна из областей, в которой PLASMA демонстрирует особую перспективность, — это сфера архивного хранения. Его высокая эффективность сжатия в сочетании с качеством изображения без потерь делает его идеальным кандидатом для хранения огромных коллекций цифровых изображений таким образом, чтобы экономить место без ущерба для детализации. Библиотеки, музеи и другие учреждения, которым требуется долгосрочное цифровое сохранение, могут получить большую выгоду от внедрения PLASMA, поскольку он предлагает устойчивое решение проблем хранения и доступа к большим объемам изображений высокого разрешения.
Несмотря на многочисленные преимущества, переход на использование PLASMA не лишен проблем. Совместимость с устаревшими системами и рабочими процессами является особой областью беспокойства. Многие организации и частные лица полагаются на устоявшиеся форматы изображений и могут не решаться принять новый стандарт, требующий обновления программного обеспечения или изменения существующих процессов. Чтобы смягчить эти опасения, команда р азработчиков PLASMA сосредоточилась на обеспечении обратной совместимости формата, где это возможно, и предоставила набор инструментов и ресурсов для преобразования, чтобы облегчить переход.
Еще одной проблемой, с которой сталкивается PLASMA, является необходимость широкого просвещения и информирования о его преимуществах и возможностях. Как относительно новый формат, он конкурирует с устоявшимися стандартами, с которыми пользователи уже знакомы. Для решения этой проблемы проводятся комплексные информационные кампании, направленные на демонстрацию превосходной производительности и универсальности PLASMA. Эти усилия включают учебные пособия, вебинары и сотрудничество с влиятельными художниками и профессионалами, которые могут продемонстрировать преимущества PLASMA в реальных приложениях.
Заглядывая в будущее, будущее формата изображений PLASMA кажется светлым. По мере развития технологии цифровой обработки изображений растет потребность в форматах, которые могут обеспечить высококачественные, эффективные и адаптивные решения. Благодаря своим передовым функциям и постоянным усилиям по улучше нию доступности и внедрения PLASMA хорошо подготовлен к решению этих задач. Будь то профессиональная фотография, веб-дизайн или цифровое искусство, PLASMA предлагает убедительный выбор для тех, кто хочет расширить границы возможного в области цифровой обработки изображений.
В заключение, формат изображения PLASMA представляет собой значительный шаг вперед в области цифровой обработки изображений. Благодаря своей высокой эффективности сжатия, поддержке широкой цветовой гаммы, адаптивности и удобным функциям PLASMA предлагает комплексное решение, которое отвечает потребностям широкого спектра приложений. Несмотря на проблемы, связанные с внедрением и образованием, совместные усилия лидеров отрасли и неотъемлемые преимущества формата делают его сильным претендентом в продолжающейся эволюции стандартов изображений. По мере развития технологий инновационный подход PLASMA к сжатию и качеству изображений в сочетании с его перспективными функциями отличает его как формат, предназначенный для будущего цифровых визуальных медиа.
Поддерживаемые форматы
AAI.aai
Изображение AAI Dune
AI.ai
Adobe Illustrator CS2
AVIF.avif
Формат файла изображения AV1
BAYER.bayer
Сырое изображение Bayer
BMP.bmp
Изображение битовой карты Microsoft Windows
CIN.cin
Файл изображения Cineon
CLIP.clip
Маска изображения Clip
CMYK.cmyk
Сырые голубые, пурпурные, желтые и черные образцы
CUR.cur
Значок Microsoft
DCX.dcx
Многостраничный рисунок ZSoft IBM PC
DDS.dds
Изображение Microsoft DirectDraw Surface
DPX.dpx
Изображение SMTPE 268M-2003 (DPX 2.0)
DXT1.dxt1
Изображение Microsoft DirectDraw Surface
EPDF.epdf
Зашифрованный формат портативного документа
EPI.epi
Формат обмена Adobe Encapsulated PostScript
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Формат обмена Adobe Encapsulated PostScript
EPT.ept
Зашифрованный PostScript с предварительным просмотром TIFF
EPT2.ept2
Зашифрованный PostScript уровня II с предварительным просмотром TIFF
EXR.exr
Изображение с высоким динамическим диапазоном (HDR)
FF.ff
Farbfeld
FITS.fits
Гибкая система передачи изображений
GIF.gif
Формат обмена графическими данными CompuServe
HDR.hdr
Изображение с высоким динамическим диапазоном (HDR)
HEIC.heic
Высокоэффективный контейнер изображений
HRZ.hrz
Медленное сканирование телевизионного сигнала
ICO.ico
Значок Microsoft
ICON.icon
Значок Microsoft
J2C.j2c
Кодовый поток JPEG-2000
J2K.j2k
Кодовый поток JPEG-2000
JNG.jng
Графика JPEG Network
JP2.jp2
Синтаксис файла JPEG-2000
JPE.jpe
Формат Joint Photographic Experts Group JFIF
JPEG.jpeg
Формат Joint Photographic Experts Group JFIF
JPG.jpg
Формат Joint Photographic Experts Group JFIF
JPM.jpm
Синтаксис файла JPEG-2000
JPS.jps
Формат Joint Photographic Experts Group JPS
JPT.jpt
Синтаксис файла JPEG-2000
JXL.jxl
Изображение JPEG XL
MAP.map
База данных изображений с множественным разрешением (MrSID)
MAT.mat
Формат изображения MATLAB уровня 5
PAL.pal
Палмовый пиксмап
PALM.palm
Палмовый пиксмап
PAM.pam
Общий 2-мерный формат битмапа
PBM.pbm
Портативный формат битмапа (черно-белый)
PCD.pcd
Фото CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Формат просмотра базы данных Palm
PDF.pdf
Портативный формат документа
PDFA.pdfa
Порта тивный формат архива документов
PFM.pfm
Портативный формат с плавающей запятой
PGM.pgm
Портативный формат серого битмапа (оттенки серого)
PGX.pgx
Формат JPEG 2000 без сжатия
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Совместная группа экспертов по фотографии формат JFIF
PNG.png
Портативная графика сети
PNG00.png00
Наследование PNG бит-глубины, типа цвета от исходного изображения
PNG24.png24
Непрозрачный или бинарно прозрачный 24-битный RGB (zlib 1.2.11)
PNG32.png32
Непрозрачный или бинарно прозрачный 32-битный RGBA
PNG48.png48
Непрозрачный или бинарно прозрачный 48-битный RGB
PNG64.png64
Непрозрачный или бинарно прозрачный 64-битный RGBA
PNG8.png8
Непрозрачный или бинарно прозрачный 8-битный индексный
PNM.pnm
Портативный любой битмап
PPM.ppm
Портативный формат пиксмапа (цвет)
PS.ps
Файл Adobe PostScript
PSB.psb
Формат большого документа Adobe
PSD.psd
Битмап Adobe Photoshop
RGB.rgb
Сырые образцы красного, зеленого и синего
RGBA.rgba
Сырые образцы красного, зеленого, синего и альфа
RGBO.rgbo
Сырые образцы красного, зеленого, синего и непрозрачности
SIX.six
Формат графики DEC SIXEL
SUN.sun
Файл Sun Rasterfile
SVG.svg
Масштабируемая векторная графика
TIFF.tiff
Формат файла изображения с тегами
VDA.vda
Изображение Truevision Targa
VIPS.vips
Изображение VIPS
WBMP.wbmp
Беспроводное изображение (уровень 0)
WEBP.webp
Формат изображения WebP
YUV.yuv
CCIR 601 4:1:1 или 4:2:2
Часто задаваемые вопросы
Как это работает?
Этот конвертер полностью работает в вашем браузере. Когда вы выбираете файл, он загружается в память и преобразуется в выбранный формат. Затем вы можете скачать преобразованный файл.
Сколько времени занимает преобразование файла?
Преобразования начинаются мгновенно, и большинство файлов преобразуются за считанные секунды. Более крупные файлы могут занимать больше времени.
Что происходит с моими файлами?
Ваши файлы никогда не загружаются на наши серверы. Они преобразуются в вашем браузере, а затем скачиваются. Мы никогда не видим ваши файлы.
Какие типы файлов я могу преобразовать?
Мы поддерживаем преобразование между всеми форматами изображений, включая JPEG, PNG, GIF, WebP, SVG, BMP, TIFF и другие.
Сколько это стоит?
Этот конвертер полностью бесплатен и всегда будет бесплатным. Поскольку он работает в вашем браузere, нам не нужно платить за серверы, поэтому мы не взимаем плату с вас.
Могу ли я преобразовать несколько файлов одновременно?
Да! Вы можете преобразовать сколько угодно фай лов одновременно. Просто выберите несколько файлов при их добавлении.