OCR любого CLIP
Перетащите и отпустите или нажмите для выбора
Конфиденциально и безопасно
Все происходит в вашем браузере. Ваши файлы никогда не попадают на наши серверы.
Молниеносно
Никаких загрузок, никаких ожиданий. Конвертируйте в тот момент, когда вы перетаскиваете файл.
Действительно бесплатно
Не требуется учетная запись. Никаких скрытых платежей. Никаких уловок с размером файла.
Оптическое распознавание символов (OCR) преобразует изображения текста — сканы, фотографии со смартфона, PDF-файлы — в машиночитаемые строки и, все чаще, в структурированные данные. Современное OCR — это конвейер, который очищает изображение, находит текст, читает его и экспортирует богатые метаданные, чтобы последующие системы могли искать, индексировать или извлекать поля. Два широко используемых стандарта вывода: hOCR, микроформат HTML для тек ста и макета, и ALTO XML, схема, ориентированная на библиотеки/архивы; оба сохраняют позиции, порядок чтения и другие подсказки макета и поддерживаются популярными движками, такими как Tesseract.
Краткий обзор конвейера
Предварительная обработка. Качество OCR начинается с очистки изображения: преобразования в оттенки серого, удаления шума, пороговой обработки (бинаризации) и выравнивания. Канонические учебные пособия по OpenCV охватывают глобальную, адаптивную и пороговую обработку Оцу — основные методы для документов с неравномерным освещением или бимодальными гистограммами. Когда освещение меняется в пределах страницы (подумайте о снимках с телефона), адаптивные методы часто превосходят один глобальный порог; Оцу автоматически выбирает порог, анализируя гистограмму. Коррекция наклона не менее важна: выравниван ие на основе преобразования Хафа (преобразование Хафа для линий) в паре с бинаризацией Оцу является распространенным и эффективным рецептом в производственных конвейерах предварительной обработки.
Обнаружение и распознавание. OCR обычно делится на обнаружение текста (где находится текст?) и распознавание текста (что он говорит?). В естественных сценах и многих сканах полностью сверточные детекторы, такие как EAST , эффективно предсказывают четырехугольники на уровне слов или строк без тяжелых этапов предложения и реализованы в общих наборах инструментов (например, учебное пособие по обнаружению текста в OpenCV). На сложных страницах (газеты, формы, книги) важны сегментация строк/областей и определение порядка чтения:Kraken реализует традиционную сегментацию зон/строк и нейронную сегментацию базовой линии с явной поддержкой различных письменносте й и направлений (слева направо/справа налево/вертикально).
Модели распознавания. Классическая рабочая лошадка с открытым исходным кодом Tesseract (с открытым исходным кодом от Google, с корнями в HP) эволюционировала от классификатора символов до распознавателя последовательностей на основе LSTM и может выдавать PDF с возможностью поиска, выходные данные, дружественные к hOCR/ALTO, и многое другое из командной строки. Современные распознаватели полагаются на моделирование последовательностей без предварительно сегментированных символов. Коннективистская временная классификация (CTC) остается основополагающей, изучая выравнивания между последовательностями входных признаков и строками выходных меток; она широко используется в конвейерах для распознавания рукописного ввода и текста на сцене.
В последние несколько лет трансформеры изменили OCR. TrOCR использует кодировщик Vision Transformer и декодер Text Transformer, обученный на больших синтетических корпусах, а затем доработанный на реальных данных, с высокой производительностью на тестах печатного, рукописного и сценического текста (см. также документацию Hugging Face). Параллельно некоторые системы обходят OCR для последующего понимания: Donut (Document Understanding Transformer) — это кодировщик-декодер без OCR, который напрямую выводит структурированные ответы (например, JSON «ключ-значение») из изображений документов (репозиторий, карточка модели), избегая накопления ошибок, когда отдельный шаг OCR передает данные в систему извлечения информации.
Движки и библиотеки
Если вам нужно готовое решение для чтения текста на многих языках, EasyOCR предлагает простой API с более чем 80 языковыми моделями, возвращающий рамки, текст и достоверность — удобно для прототипов и нелатинских письменностей. Для исторических документов Kraken отличается сегментацией базовой линии и порядком чтения с учетом письменности; для гибкого обучения на уровне строк Calamari основан на наследии Ocropy (Ocropy) с распознавателями (multi-)LSTM+CTC и CLI для тонкой настройки пользовательских моделей.
Наборы данных и тесты
Обобщение зависит от данных. Для рукописного ввода база данных рукописного ввода IAM предоставляет разнообразные по авторам английские предложения для обучения и оценки; это давний эталонный набор для распознавания строк и слов. Для текста на сцене COCO-Text наложил обширные аннотации на MS-COCO с метками для печатного/рукописного, разборчивого/неразборчивого, письменности и полных транскрипций (см. также оригинальную страницу проекта). Эта область также в значительной степени зависит от синтетического предварительного обучения: SynthText in the Wild визуализирует текст на фотографиях с реалистичной геометрией и освещением, предоставляя огромные объемы данных для предварительного обучения детекторов и распознавателей (ссылка на код и данные).
Соревнования под эгидой ICDAR’s Robust Reading сохраняют обоснованность оценки. Последние задачи подчеркивают сквозное обнаружение/чтение и включают связывание слов во фразы, с официальным кодом, сообщающим точность/полноту/F-меру, пересечение над объединением (IoU) и метрики расстояния редактирования на уровне символов, что отражает то, что должны отслеживать практики.
Форматы вывода и последующее использование
OCR редко заканчивается простым текстом. Архивы и цифровые библиотеки предпочитают ALTO XML , потому что он кодирует физический макет (блоки/строки/слова с координатами) вместе с содержимым, и он хорошо сочетается с упаковкой METS. Микроформат hOCR , напротив, встраивает ту же идею в HTML/CSS, используя классы, такие как ocr_line и ocrx_word, что упрощает отображение, редактирование и преобразование с помощью веб-инструментов. Tesseract предоставляет оба варианта, например, генерируя hOCR или PDF с возможностью поиска прямо из командной строки (руководство по выводу PDF); оболочки Python, такие как pytesseract , добавляют удобства. Существуют преобразователи для перевода между hOCR и ALTO, когда в репозиториях есть фиксированные стандарты приема — см. этот тщательно подобранный список инструментов для формата файлов OCR.
Практическое руководство
- Начните с данных и чистоты. Если ваши изображения — это фотографии с телефона или сканы смешанного качества, вложитесь в пороговую обработку (адаптивную и Оцу) и выравнивание (Хафа) перед любой настройкой модели. Вы часто получите больше от надежного рецепта предварительной обработки, чем от замены распознавателей.
- Выберите правильный детектор. Для отсканированных страниц с обычными столбцами может быть достаточно сегментатора страниц (зоны → строки); для естественных изображений детекторы одного прохода, такие как EAST , являются сильными базовыми линиями и подключаются ко многим наборам инструментов (пример OpenCV).
- Выберите распознаватель, который соответствует вашему тексту. Для печатной латиницы Tesseract (LSTM/OEM) надежен и быстр; для нескольких письменностей или быстрых прототипов EasyOCR продуктивен; для рукописного ввода или исторических шрифтов рассмотрите Kraken или Calamari и планируйте тонкую настройку. Если вам нужна тесная связь с пониманием документов (извлечение пар «ключ-значение», VQA), оцените TrOCR (OCR) по сравнению с Donut (без OCR) на вашей схеме — Donut может устранить целый шаг интеграции.
- Измеряйте то, что имеет значение. Для сквозных систем сообщайте об обнаружении F-мера и распознавании CER/WER (оба основаны на расстоянии редактирования Левенштейна ; см. CTC); для задач с интенсивным использованием макета отслеживайте IoU/плотность и нормализованное расстояние редактирования на уровне символов, как в наборах для оценки ICDAR RRC .
- Экспортируйте богатые выходные данные. Предпочитайте hOCR /ALTO (или оба), чтобы сохранить координаты и порядок чтения — это жизненно важно для выделения результатов поиска, извлечения таблиц/полей и происхождения. CLI Tesseract и pytesseract делают это одной строкой.
Взгляд в будущее
Самая сильная тенденция — это конвергенция: обнаружение, распознавание, языковое моделирование и даже декодирование для конкретных задач объединяются в единые стеки трансформеров. Предварительное обучение на больших синтетических корпусах остается мультипликатором силы. Модели без OCR будут агрессивно конкурировать везде, где целью являются структурированные выходные данные, а не дословные транскрипции. Ожидайте также гибридных развертываний: легкий детектор плюс распознаватель в стиле TrOCR для длинного текста и модель в стиле Donut для форм и квитанций.
Дополнительная литература и инструменты
Tesseract (GitHub) · Документация Tesseract · Спецификация hOCR · Фон ALTO · Детектор EAST · Обнаружение текста OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Рукописный ввод IAM · Инструменты формата файлов OCR · EasyOCR
Часто задаваемые вопросы
Что такое OCR?
Оптическое распознавание символов (OCR) - это технология, используемая для преобразования различных типов документов, таких как отсканированные бумажные документы, PDF-файлы или изображения, снятые цифровой камерой, в данные, которые можно редактировать и искать.
Как работает OCR?
OCR сканирует входное изображение или документ, разбирает изображение на отдельные символы, а затем сравнивает каждый символ с базой данных форм символов, используя распознавание по образцу или распознавание по признакам.
Какие практические применения у OCR?
OCR используется в различных отраслях и приложениях, включая цифровизацию печатных документов, использование услуг перевода текста в речь, автоматизацию процесса ввода данных и помощь людям с нарушениями зрения в более качественном взаимодействии с текстом.
OCR всегда на 100% точен?
Несмотря на значительные усовершенствования технологии OCR, она не абсолютно надежна. Точность может варьироваться в зависимости от качества исходного документа и конкретных характеристик используемого ПО OCR.
Может ли OCR распознавать рукописный текст?
Хотя OCR в основном предназначен для распознавания печатного текста, некоторые продвинутые системы OCR также могут распознавать чистописание. Однако точность распознавания рукописного текста обычно ниже из-за вариативности индивидуальных стилей письма.
Может ли OCR обрабатывать несколько языков?
Да, многие программы OCR могут распознавать множество языков. Однако следует убедиться, что используемое вами программное обеспечение поддерживает конкретный язык.
В чем разница между OCR и ICR?
OCR - это аббревиатура от Optical Character Recognition (оптическое распознавание символов), которое используется для распознавания печатного текста, в то время как ICR, или Intelligent Character Recognition (интеллектуальное распознавание символов), это более продвинутая технология, которая используется для распознавания рукописного т екста.
Может ли OCR обрабатывать все шрифты и размеры текста?
OCR наиболее эффективен при обработке четких, легко читаемых шрифтов и стандартных размеров текста. Хотя он способен распознавать различные шрифты и размеры, его точность может снизиться при обработке нестандартных шрифтов или очень мелкого текста.
Каковы ограничения технологии OCR?
У OCR может быть проблемы при обработке документов с низким разрешением, сложных шрифтов, текста с плохим качеством печати, рукописного текста или документов, где текст плохо сочетается с фоном. Кроме того, хотя OCR может распознавать многие языки, он может не покрывать все языки идеально.
Может ли OCR сканировать цветной текст или цветной фон?
Да, OCR может сканировать цветной текст и фоны, хотя он наиболее эффективен при работе с комбинациями цветов с высоким контрастом, такими как черный текст на белом фоне. Если контраст между цветом текста и фона недостаточен, точность может снизиться.
Что такое формат CLIP?
Маска изображения Clip
Формат сжатого изображения (CIP) — это современный формат файла изображения, разработанный для эффективного хранения и передачи изображений, особенно для веб-приложений и мобильных приложений, где пропускная способность и место для хранения имеют первостепенное значение. В отличие от традиционных форматов, таких как JPEG, PNG и GIF, CIP использует передовые алгоритмы сжатия и модульную структуру для достижения превосходных коэффициентов сжатия без существенного ущерба для качества изображения. Это техническое объяснение углубляется в тонкости формата CIP, включая его архитектуру, методы сжатия и практические приложения.
В основе формата CIP лежит его модульная структура, которая обеспечивает высокую степень гибкости и расширяемости. Файл CIP состоит из нескольких независимых модулей, каждый из которых отвечает за определенный аспект изображения, такой как его метаданные, палитра, данные пикселей и необязательные компоненты, такие как прозрачность альфа-канала или кадры анимации. Эта модульность не только облегчает процессы эффективного кодирования и декодирования, но также делает файлы CIP в высокой степени настраиваемыми в соответствии с конкретными потребностями или ограничениями.
Одной из ключевых особенностей, отличающих CIP от других форматов изображений, является его передовая технология сжатия. CIP использует комбинацию методов сжатия без потерь и с потерями, динамически выбирая наиболее подходящую технологию на основе содержимого изображения и желаемого баланса между коэффициентом сжатия и качеством изображения. Для графических изображений с резкими краями и сплошными цветами CIP использует алгоритмы сжатия без потерь, которые сохраняют целостность каждого пикселя. Для фотографических изображений с более тонкими цветовыми вариациями CIP использует сложный алгоритм сжатия с потерями, который уменьшает размер файла, упрощая цветовые градиенты без заметного ухудшения для человеческого глаза.
Чтобы достичь высоких коэффициентов сжатия без ущерба для качества, механизм сжатия с потерями CIP включает в себя запатентованную технологию, известную как «интеллектуальное приближение пикселей». Этот метод анализирует цветовую палитру и пространственные характеристики изображения, чтобы определить области, в которых цветовые вариации могут быть оптимизированы без существенного влияния на воспринимаемое качество изображения. Интеллектуально приближая похожие цвета и объединяя мелкие детали в более крупные, более однородные области, CIP может значительно уменьшить объем данных, необходимых для представления изображения, сохраняя при этом его визуальную точность.
Еще одним новшеством в формате CIP является его функция масштабирования адаптивного разрешения. Это позволяет хранить изображения CIP с несколькими разрешениями в одном файле, что дает приложениям возможность динамически выбирать наиболее подходящее разрешение в зависимости от устройства отображения или ограничений пропускной способности. Эта функция особенно полезна для адаптивного веб-дизайна и мобильных приложений, где качество изображения должно быть оптимизировано для широкого диапазона размеров экрана и сетевых условий. Встраивая несколько разрешений в один файл, CIP устраняет необходимость в отдельных файлах для каждого разрешения, упрощая управление контентом и уменьшая нагрузку на сервер.
CIP также представляет уникальный подход к обработке прозрачности и анимации, отличаясь от других форматов изображений. Для прозрачности CIP использует отдельный модуль, который можно по желанию включить в файл, что позволяет более эффективно сжимать, изолируя прозрачные области от цветовых данных. Это приводит к более высоким коэффициентам сжатия по сравнению с традиционными методами, которые смешивают прозрачность и цветовую информацию. Когда дело доходит до анимации, CIP поддерживает как покадровую, так и векторную анимацию в одной и той же структуре файла, обеспечивая гибкость в создании динамического контента без необходимости в отдельных файлах или форматах.
Процесс кодирования файла CIP включает несколько этапов, начиная с разбора содержимого изображения для определения отдельных модулей, таких как метаданные, цветовые данные и любые необязательные компоненты. Затем каждый модуль сжимается с использованием наиболее подходящей технологии сжатия, после чего все модули упаковываются вместе в один целостный файл CIP. Этот модульный подход не только повышает эффективность сжатия, но и опт имизирует процессы кодирования и декодирования, поскольку модули могут обрабатываться независимо друг от друга.
Декодирование файла CIP также эффективно благодаря его модульной конструкции. Приложения могут быстро получать доступ к определенным модулям, не нуждаясь в декодировании всего файла, что значительно ускоряет время рендеринга изображения. Это особенно выгодно для веб-приложений, которым требуется быстрое время загрузки для улучшения взаимодействия с пользователем. Более того, благодаря своим интеллектуальным технологиям сжатия изображения CIP могут отображаться с высоким качеством даже при более низких разрешениях, гарантируя, что пользователи по-прежнему наслаждаются визуально привлекательным контентом при ограничениях пропускной способности или хранилища.
Разработка формата изображения CIP отражает продолжающуюся тенденцию к оптимизации цифрового контента для современных веб- и мобильных ландшафтов. С постоянным ростом потребления данных и ожиданий пользователей такие форматы, как CIP, имеют решающее значение для балансировки потребности в высококачественных изображени ях с практическими соображениями, такими как размер файла, скорость загрузки и эффективность сети. Решая эти проблемы в лоб, CIP не только улучшает визуальный веб-опыт, но и способствует уменьшению общего объема данных онлайн-контента, что является ключевой проблемой в эпоху доминирования мобильных устройств.
Реализация поддержки формата CIP в программном обеспечении и приложениях требует понимания его структуры и алгоритмов. Разработчики могут использовать существующие библиотеки и SDK, которые предоставляют функции для кодирования и декодирования изображений CIP, интегрируя их в конвейеры обработки изображений или системы управления контентом. Учитывая модульность формата, разработчики также имеют гибкость в настройке процессов кодирования и декодирования для оптимизации под конкретные варианты использования, будь то приоритет коэффициента сжатия, качества изображения или скорости декодирования.
Принятие CIP в различных секторах подчеркивает его универсальность и эффективность. В веб-разработке изображения CIP значительно сокращают время загрузки веб-страниц, улучшая рейтинг в поисковых системах и показатели удержания пользователей. Для мобильных приложений эффективное использование пропускной способности и хранилища форматом помогает создавать более плавный и отзывчивый опыт даже на устройствах с ограниченными ресурсами. Кроме того, в цифровом издательстве и онлайн-СМИ адаптивное разрешение CIP и расширенные возможности сжатия гарантируют, что высококачественные изображения могут быть доставлены эффективно, улучшая визуальную привлекательность контента без недостатков больших размеров файлов.
По сравнению с другими форматами изображений CIP предлагает конкурентное преимущество в сценариях, где баланс между качеством изображения и размером файла имеет первостепенное значение. Хотя такие форматы, как JPEG и PNG, широко используются и поддерживаются, их методы сжатия и ограничения структуры часто приводят к большим размерам файлов или более низкому качеству при сопоставимых уровнях сжатия. Интеллектуальное сжатие и модульность CIP не только обеспечивают превосходную эффективность, но и делают формат перспективным, позволяя добавлять новые функции и улучшения без нарушения совместимости с существующим контентом.
Продолжающаяся разработка и стандартизация формата CIP имеют решающее значение для его более широкого внедрения и долгосрочного успеха. Сотрудничество в отрасли и вклад в спецификацию CIP гарантируют, что он остается актуальным и продолжает соответствовать меняющимся потребностям создателей и потребителей цифрового контента. В рамках этих усилий доступны обширная документация, учебные пособия и форумы сообщества, чтобы помочь разработчикам внедрить CIP, преодолеть техничес кие проблемы и поделиться передовым опытом оптимизации содержимого изображений.
По мере развития цифровых ландшафтов будут меняться и требования к форматам изображений. Дизайн CIP, ориентированный на гибкость, эффективность и качество, позволяет ему хорошо адаптироваться к будущим вызовам. Будь то улучшение алгоритмов сжатия, внедрение новых функций, таких как поддержка HDR, или улучшение совместимости с новыми технологиями отображения, формат CIP готов оставаться на переднем крае решений для цифровой обработки изображений. Его постоянное развитие будет иметь решающее значение для обеспечения того, чтобы он продолжал предоставлять эффективную платформу для высококачественного, эффективного хранения и передачи изображений в ближайшие годы.
Поддерживаемые форматы
AAI.aai
Изображение AAI Dune
AI.ai
Adobe Illustrator CS2
AVIF.avif
Формат файла изображения AV1
BAYER.bayer
Сырое изображение Bayer
BMP.bmp
Изображение битовой карты Microsoft Windows
CIN.cin
Файл изображения Cineon
CLIP.clip
Маска изображения Clip
CMYK.cmyk
Сырые голубые, пурпурные, желтые и черные образцы
CUR.cur
Значок Microsoft
DCX.dcx
Многостраничный рисунок ZSoft IBM PC
DDS.dds
Изображение Microsoft DirectDraw Surface
DPX.dpx
Изображение SMTPE 268M-2003 (DPX 2.0)
DXT1.dxt1
Изображение Microsoft DirectDraw Surface
EPDF.epdf
Зашифрованный формат портативного документа
EPI.epi
Формат обмена Adobe Encapsulated PostScript
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Формат обмена Adobe Encapsulated PostScript
EPT.ept
Зашифрованный PostScript с предварительным просмотром TIFF
EPT2.ept2
Зашифрованный PostScript уровня II с предварительным просмотром TIFF
EXR.exr
Изображение с высоким динамическим диапазоном (HDR)
FF.ff
Farbfeld
FITS.fits
Гибкая система передачи изображений
GIF.gif
Формат обмена графическими данными CompuServe
HDR.hdr
Изображение с высоким динамическим диапазоном (HDR)
HEIC.heic
Высокоэффективный контейнер изображений
HRZ.hrz
Медленное сканирование телевизионного сигнала
ICO.ico
Значок Microsoft
ICON.icon
Значок Microsoft
J2C.j2c
Кодовый поток JPEG-2000
J2K.j2k
Кодовый поток JPEG-2000
JNG.jng
Графика JPEG Network
JP2.jp2
Синтаксис файла JPEG-2000
JPE.jpe
Формат Joint Photographic Experts Group JFIF
JPEG.jpeg
Формат Joint Photographic Experts Group JFIF
JPG.jpg
Формат Joint Photographic Experts Group JFIF
JPM.jpm
Синтаксис файла JPEG-2000
JPS.jps
Формат Joint Photographic Experts Group JPS
JPT.jpt
Синтаксис файла JPEG-2000
JXL.jxl
Изображение JPEG XL
MAP.map
База данных изображений с множественным разрешением (MrSID)
MAT.mat
Формат изображения MATLAB уровня 5
PAL.pal
Палмовый пиксмап
PALM.palm
Палмовый пиксмап
PAM.pam
Общий 2-мерный формат битмапа
PBM.pbm
Портативный формат битмапа (черно-белый)
PCD.pcd
Фото CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Формат просмотра базы данных Palm
PDF.pdf
Портативный формат документа
PDFA.pdfa
Портативный формат архива документов
PFM.pfm
Портативный формат с плавающей запятой
PGM.pgm
Портативный формат серого битмапа (оттенки серого)
PGX.pgx
Формат JPEG 2000 без сжатия
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Совместная группа экспертов по фотографии формат JFIF
PNG.png
Портативная графика сети
PNG00.png00
Наследование PNG бит-глубины, типа цвета от исходного изображения
PNG24.png24
Непрозрачный или бинарно прозрачный 24-битный RGB (zlib 1.2.11)
PNG32.png32
Непрозрачный или бинарно прозрачный 32-битный RGBA
PNG48.png48
Непрозрачный или бинарно прозрачный 48-битный RGB
PNG64.png64
Непрозрачный или бинарно прозрачный 64-битный RGBA
PNG8.png8
Непрозрачный или бинарно прозрачный 8-битный индексный
PNM.pnm
Портативный любой битмап
PPM.ppm
Портативный формат пиксмапа (цвет)
PS.ps
Файл Adobe PostScript
PSB.psb
Формат большого документа Adobe
PSD.psd
Битмап Adobe Photoshop
RGB.rgb
Сырые образцы красного, зеленого и синего
RGBA.rgba
Сырые образцы красного, зеленого, синего и альфа
RGBO.rgbo
Сырые образцы красного, зеленого, синего и непрозрачности
SIX.six
Формат графики DEC SIXEL
SUN.sun
Файл Sun Rasterfile
SVG.svg
Масштабируемая векторная графика
TIFF.tiff
Формат файла изображения с тегами
VDA.vda
Изображение Truevision Targa
VIPS.vips
Изображение VIPS
WBMP.wbmp
Беспроводное изображение (уровень 0)
WEBP.webp
Формат изображения WebP
YUV.yuv
CCIR 601 4:1:1 или 4:2:2
Часто задаваемые вопросы
Как это работает?
Этот конвертер полностью работает в вашем браузере. Когда вы выбираете файл, он загружается в память и преобразуется в выбранный формат. Затем вы можете скачать преобразованный файл.
Сколько времени занимает преобразование файла?
Преобразования начинаются мгновенно, и большинство файлов преобразуются за считанные секунды. Более крупные файлы могут занимать больше времени.
Что происходит с моими файлами?
Ваши файлы никогда не загружаются на наши серверы. Они преобразуются в вашем браузере, а затем скачиваются. Мы никогда не видим ваши файлы.
Какие типы файлов я могу преобразовать?
Мы поддерживаем преобразование между всеми форматами изображений, включая JPEG, PNG, GIF, WebP, SVG, BMP, TIFF и другие.
Сколько это стоит?
Этот конвертер полностью бесплатен и всегда будет бесплатным. Поскольку он работает в вашем браузere, нам не нужно платить за серверы, поэтому мы не взимаем плату с вас.
Могу ли я преобразовать несколько файлов одновременно?
Да! Вы можете преобразовать сколько угодно файлов одновременно. Просто выберите несколько файлов при их добавлении.