OCR any SVG

Unlimited jobs. Filesizes up to 2.5GB. For free, forever.

All local

Our converter runs in your browser, so we never see your data.

Blazing fast

No uploading your files to a server—conversions start instantly.

Secure by default

Unlike other converters, your files are never uploaded to us.

OCR, or Optical Character Recognition, is a technology used to convert different types of documents, such as scanned paper documents, PDF files or images captured by a digital camera, into editable and searchable data.

In the first stage of OCR, an image of a text document is scanned. This could be a photo or a scanned document. The purpose of this stage is to make a digital copy of the document, instead of requiring manual transcription. Additionally, this digitization process can also help increase the longevity of materials because it can reduce the handling of fragile resources.

Once the document is digitized, the OCR software separates the image into individual characters for recognition. This is called the segmentation process. Segmentation breaks down the document into lines, words, and then ultimately individual characters. This division is a complex process because of the myriad factors involved -- different fonts, different sizes of text, and varying alignment of the text, just to name a few.

After segmentation, the OCR algorithm then uses pattern recognition to identify each individual character. For each character, the algorithm will compare it to a database of character shapes. The closest match is then selected as the character's identity. In feature recognition, a more advanced form of OCR, the algorithm not only examines the shape but also takes into account lines and curves in a pattern.

OCR has numerous practical applications -- from digitizing printed documents, enabling text-to-speech services, automating data entry processes, to even assisting visually impaired users to better interact with text. However, it is worth noting that the OCR process isn't infallible and may make mistakes especially when dealing with low-resolution documents, complex fonts, or poorly printed texts. Hence, accuracy of OCR systems varies significantly depending upon the quality of the original document and the specifics of the OCR software being used.

OCR is a pivotal technology in modern data extraction and digitization practices. It saves significant time and resources by mitigating the need for manual data entry and providing a reliable, efficient approach to transforming physical documents into a digital format.

Frequently Asked Questions

What is OCR?

Optical Character Recognition (OCR) is a technology used to convert different types of documents, such as scanned paper documents, PDF files or images captured by a digital camera, into editable and searchable data.

How does OCR work?

OCR works by scanning an input image or document, segmenting the image into individual characters, and comparing each character with a database of character shapes using pattern recognition or feature recognition.

What are some practical applications of OCR?

OCR is used in a variety of sectors and applications, including digitizing printed documents, enabling text-to-speech services, automating data entry processes, and assisting visually impaired users to better interact with text.

Is OCR always 100% accurate?

While great advancements have been made in OCR technology, it isn't infallible. Accuracy can vary depending upon the quality of the original document and the specifics of the OCR software being used.

Can OCR recognize handwriting?

Although OCR is primarily designed for printed text, some advanced OCR systems are also able to recognize clear, consistent handwriting. However, typically handwriting recognition is less accurate because of the wide variation in individual writing styles.

Can OCR handle multiple languages?

Yes, many OCR software systems can recognize multiple languages. However, it's important to ensure that the specific language is supported by the software you're using.

What's the difference between OCR and ICR?

OCR stands for Optical Character Recognition and is used for recognizing printed text, while ICR, or Intelligent Character Recognition, is more advanced and is used for recognizing hand-written text.

Does OCR work with any font and text size?

OCR works best with clear, easy-to-read fonts and standard text sizes. While it can work with various fonts and sizes, accuracy tends to decrease when dealing with unusual fonts or very small text sizes.

What are the limitations of OCR technology?

OCR can struggle with low-resolution documents, complex fonts, poorly printed texts, handwriting, and documents with backgrounds that interfere with the text. Also, while it can work with many languages, it may not cover every language perfectly.

Can OCR scan colored text or colored backgrounds?

Yes, OCR can scan colored text and backgrounds, although it's generally more effective with high-contrast color combinations, such as black text on a white background. The accuracy might decrease when text and background colors lack sufficient contrast.

What is the SVG format?

Scalable Vector Graphics

Scalable Vector Graphics (SVG) is a widely-used markup language for describing two-dimensional graphics in XML. Unlike raster graphics formats such as JPEG, PNG, or GIF, which store images as a collection of individual pixels, SVG works by defining shapes, lines, and colors through mathematical formulas. This fundamental difference allows SVG files to be scaled to any size without losing quality, making them ideal for responsive web design, complex illustrations, and logos that need to maintain sharpness across a variety of devices and resolutions.

SVG graphics are composed of vector shapes such as circles, rectangles, polygons, and paths described by points in a 2D space, along with stroke, fill, and other visual properties defined using SVG's markup language. Each element and attribute within an SVG file directly corresponds to a part of the SVG rendering model, enabling fine-grained control over the appearance of the graphic. SVG files can be created and edited with any text editor, as they are plain text files, and they can also be generated and manipulated programmatically using various software libraries.

One of the key features of SVG is its DOM interface. SVG images can be embedded directly into HTML documents, and because they become part of the Document Object Model (DOM), they can be interacted with just like HTML elements. This integration allows for dynamic changes to the properties of an SVG image through JavaScript and CSS, enabling animations, interactivity, and live updates to the graphic. For example, an SVG element's color, size, or position can be altered in response to user interactions, such as mouse movements or clicks, or changes in the data that the graphic represents.

SVG supports a wide array of graphical effects, including gradients, patterns, clipping paths, and masks, which provide extensive options for creating complex visual presentations. SVG also includes filter effects, such as blurring, color manipulation, and shadowing, which are defined in a manner similar to CSS filters but specifically designed for vector graphics. These effects allow developers and designers to apply sophisticated visual enhancements directly within SVG markup, making it possible to achieve detailed illustrations and textured finishes without resorting to raster images.

Interactivity and animation are among the most compelling uses of SVG. With the <animate>, <set>, and <animateTransform> elements, SVG provides a declarative syntax for animating attributes and properties of graphics over time. Additionally, SVG's integration with JavaScript extends its animation capabilities, enabling more complex and interactive animations that react to user input or other dynamic events. This combination of capabilities allows for the creation of engaging web applications, data visualizations, and interactive infographics that can leverage the full power of web technologies.

Accessibility is another significant advantage of SVG. Text within SVG images is selectable and searchable, contrasting with raster images where text is flattened. This feature not only improves the user experience by allowing text selection but also enhances the accessibility of documents, as screen readers can interpret and read aloud the text contained in SVG graphics. Furthermore, SVG supports semantic groupings of elements and descriptive tags, which help in conveying the structure and purpose of the graphic to assistive technologies.

Optimization and compression are crucial for web performance, and SVG files offer several advantages in this area. Being text-based, SVG graphics can be compressed significantly using GZIP, which can greatly reduce their file size for faster loading times. Additionally, because SVG is vector-based, it often requires less storage than high-resolution raster images, especially for simple graphics or icons. However, the verbosity of XML and the potential for overly complex or inefficiently coded graphics can lead to SVG files that are larger than necessary. Therefore, tools like SVGO (SVG Optimizer) are commonly used to clean up and optimize SVG files, removing unnecessary data and formatting to make the files as compact as possible.

SVG also plays a critical role in responsive web design. Given its scalability, SVG graphics can easily adapt to different screen sizes, resolutions, and orientations without loss of quality or pixelation issues. Designers can control the responsiveness of SVG images through attributes and CSS, ensuring that graphics look crisp and clear on all devices, from desktop monitors to smartphones. This inherent scalability makes SVG an excellent choice for logos, icons, and other graphics that need to maintain visual integrity across various display contexts.

Despite its many advantages, SVG is not without its challenges and limitations. For example, while SVG excels at representing graphical elements like shapes, lines, and text, it is not well-suited for complex images with thousands of colors and gradients, such as photographs. In these cases, raster formats like JPEG or PNG are more appropriate. Additionally, the performance of SVG can suffer when dealing with graphics that are extremely complex or contain a large number of elements, as each one must be rendered and potentially animated or interacted with.

Moreover, cross-browser compatibility has historically been a challenge for SVG. While modern web browsers have improved their support for SVG, inconsistencies can still exist in how different browsers interpret and display SVG content. Developers may need to implement workarounds or fallbacks to ensure their graphics display correctly across all platforms. Accessibility features, though robust, require careful implementation to fully benefit from SVG's capabilities, including proper labeling and structuring of graphics for assistive technologies.

The integration of SVG with other web standards opens up a broad range of possibilities for web designers and developers. SVG can be styled with CSS, giving designers the ability to apply familiar styling properties to vector graphics. It can be manipulated through JavaScript, allowing for dynamic changes and interactions. Moreover, because SVG is XML-based, it can be used in conjunction with other XML technologies and data formats, such as RSS feeds or XML databases. This integration makes SVG a powerful tool for data visualization, enabling the generation of dynamic, data-driven graphics that update in real time.

Looking to the future, the role of SVG in web development is likely to continue growing. Advances in web technologies and increasing demand for high-quality, interactive, and responsive graphics will drive further adoption and innovation in SVG usage. New features and capabilities, such as improved animation syntax, better accessibility features, and enhanced performance optimizations, are likely to be developed, making SVG an even more essential element of modern web design.

In conclusion, SVG offers a rich set of features for creating and manipulating scalable vector graphics on the web. Its ability to scale without loss of quality, combined with support for interactivity, animation, and accessibility, make it a versatile tool for designers and developers. Despite some challenges, such as cross-browser compatibility and performance considerations, SVG's benefits in terms of scalability, responsiveness, and integration with web technologies make it an invaluable asset for creating dynamic and visually appealing online experiences.

Supported formats

AAI.aai

AAI Dune image

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Image File Format

AVS.avs

AVS X image

BAYER.bayer

Raw Bayer Image

BMP.bmp

Microsoft Windows bitmap image

CIN.cin

Cineon Image File

CLIP.clip

Image Clip Mask

CMYK.cmyk

Raw cyan, magenta, yellow, and black samples

CMYKA.cmyka

Raw cyan, magenta, yellow, black, and alpha samples

CUR.cur

Microsoft icon

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) image

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Encapsulated Portable Document Format

EPI.epi

Adobe Encapsulated PostScript Interchange format

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange format

EPT.ept

Encapsulated PostScript with TIFF preview

EPT2.ept2

Encapsulated PostScript Level II with TIFF preview

EXR.exr

High dynamic-range (HDR) image

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Flexible Image Transport System

GIF.gif

CompuServe graphics interchange format

GIF87.gif87

CompuServe graphics interchange format (version 87a)

GROUP4.group4

Raw CCITT Group4

HDR.hdr

High Dynamic Range image

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Microsoft icon

ICON.icon

Microsoft icon

IPL.ipl

IP2 Location Image

J2C.j2c

JPEG-2000 codestream

J2K.j2k

JPEG-2000 codestream

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 File Format Syntax

JPC.jpc

JPEG-2000 codestream

JPE.jpe

Joint Photographic Experts Group JFIF format

JPEG.jpeg

Joint Photographic Experts Group JFIF format

JPG.jpg

Joint Photographic Experts Group JFIF format

JPM.jpm

JPEG-2000 File Format Syntax

JPS.jps

Joint Photographic Experts Group JPS format

JPT.jpt

JPEG-2000 File Format Syntax

JXL.jxl

JPEG XL image

MAP.map

Multi-resolution Seamless Image Database (MrSID)

MAT.mat

MATLAB level 5 image format

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Common 2-dimensional bitmap format

PBM.pbm

Portable bitmap format (black and white)

PCD.pcd

Photo CD

PCDS.pcds

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer Format

PDF.pdf

Portable Document Format

PDFA.pdfa

Portable Document Archive Format

PFM.pfm

Portable float format

PGM.pgm

Portable graymap format (gray scale)

PGX.pgx

JPEG 2000 uncompressed format

PICON.picon

Personal Icon

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF format

PNG.png

Portable Network Graphics

PNG00.png00

PNG inheriting bit-depth, color-type from original image

PNG24.png24

Opaque or binary transparent 24-bit RGB (zlib 1.2.11)

PNG32.png32

Opaque or binary transparent 32-bit RGBA

PNG48.png48

Opaque or binary transparent 48-bit RGB

PNG64.png64

Opaque or binary transparent 64-bit RGBA

PNG8.png8

Opaque or binary transparent 8-bit indexed

PNM.pnm

Portable anymap

PPM.ppm

Portable pixmap format (color)

PS.ps

Adobe PostScript file

PSB.psb

Adobe Large Document Format

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

Raw red, green, and blue samples

RGBA.rgba

Raw red, green, blue, and alpha samples

RGBO.rgbo

Raw red, green, blue, and opacity samples

SIX.six

DEC SIXEL Graphics Format

SUN.sun

Sun Rasterfile

SVG.svg

Scalable Vector Graphics

SVGZ.svgz

Compressed Scalable Vector Graphics

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision Targa image

VIPS.vips

VIPS image

WBMP.wbmp

Wireless Bitmap (level 0) image

WEBP.webp

WebP Image Format

YUV.yuv

CCIR 601 4:1:1 or 4:2:2

Frequently asked questions

How does this work?

This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.

How long does it take to convert a file?

Conversions start instantly, and most files are converted in under a second. Larger files may take longer.

What happens to my files?

Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.

What file types can I convert?

We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.

How much does this cost?

This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.

Can I convert multiple files at once?

Yes! You can convert as many files as you want at once. Just select multiple files when you add them.