OCR any PCX

Unlimited jobs. Filesizes up to 2.5GB. For free, forever.

All local

Our converter runs in your browser, so we never see your data.

Blazing fast

No uploading your files to a server—conversions start instantly.

Secure by default

Unlike other converters, your files are never uploaded to us.

OCR, or Optical Character Recognition, is a technology used to convert different types of documents, such as scanned paper documents, PDF files or images captured by a digital camera, into editable and searchable data.

In the first stage of OCR, an image of a text document is scanned. This could be a photo or a scanned document. The purpose of this stage is to make a digital copy of the document, instead of requiring manual transcription. Additionally, this digitization process can also help increase the longevity of materials because it can reduce the handling of fragile resources.

Once the document is digitized, the OCR software separates the image into individual characters for recognition. This is called the segmentation process. Segmentation breaks down the document into lines, words, and then ultimately individual characters. This division is a complex process because of the myriad factors involved -- different fonts, different sizes of text, and varying alignment of the text, just to name a few.

After segmentation, the OCR algorithm then uses pattern recognition to identify each individual character. For each character, the algorithm will compare it to a database of character shapes. The closest match is then selected as the character's identity. In feature recognition, a more advanced form of OCR, the algorithm not only examines the shape but also takes into account lines and curves in a pattern.

OCR has numerous practical applications -- from digitizing printed documents, enabling text-to-speech services, automating data entry processes, to even assisting visually impaired users to better interact with text. However, it is worth noting that the OCR process isn't infallible and may make mistakes especially when dealing with low-resolution documents, complex fonts, or poorly printed texts. Hence, accuracy of OCR systems varies significantly depending upon the quality of the original document and the specifics of the OCR software being used.

OCR is a pivotal technology in modern data extraction and digitization practices. It saves significant time and resources by mitigating the need for manual data entry and providing a reliable, efficient approach to transforming physical documents into a digital format.

Frequently Asked Questions

What is OCR?

Optical Character Recognition (OCR) is a technology used to convert different types of documents, such as scanned paper documents, PDF files or images captured by a digital camera, into editable and searchable data.

How does OCR work?

OCR works by scanning an input image or document, segmenting the image into individual characters, and comparing each character with a database of character shapes using pattern recognition or feature recognition.

What are some practical applications of OCR?

OCR is used in a variety of sectors and applications, including digitizing printed documents, enabling text-to-speech services, automating data entry processes, and assisting visually impaired users to better interact with text.

Is OCR always 100% accurate?

While great advancements have been made in OCR technology, it isn't infallible. Accuracy can vary depending upon the quality of the original document and the specifics of the OCR software being used.

Can OCR recognize handwriting?

Although OCR is primarily designed for printed text, some advanced OCR systems are also able to recognize clear, consistent handwriting. However, typically handwriting recognition is less accurate because of the wide variation in individual writing styles.

Can OCR handle multiple languages?

Yes, many OCR software systems can recognize multiple languages. However, it's important to ensure that the specific language is supported by the software you're using.

What's the difference between OCR and ICR?

OCR stands for Optical Character Recognition and is used for recognizing printed text, while ICR, or Intelligent Character Recognition, is more advanced and is used for recognizing hand-written text.

Does OCR work with any font and text size?

OCR works best with clear, easy-to-read fonts and standard text sizes. While it can work with various fonts and sizes, accuracy tends to decrease when dealing with unusual fonts or very small text sizes.

What are the limitations of OCR technology?

OCR can struggle with low-resolution documents, complex fonts, poorly printed texts, handwriting, and documents with backgrounds that interfere with the text. Also, while it can work with many languages, it may not cover every language perfectly.

Can OCR scan colored text or colored backgrounds?

Yes, OCR can scan colored text and backgrounds, although it's generally more effective with high-contrast color combinations, such as black text on a white background. The accuracy might decrease when text and background colors lack sufficient contrast.

What is the PCX format?

ZSoft IBM PC Paintbrush

The PCX image format, standing for 'Picture Exchange,' is a raster graphics file format that was predominantly used on DOS and Windows-based computers in the late 1980s and 1990s. Developed by ZSoft Corporation, it was one of the first widely accepted formats for color images on IBM PC compatible computers. The PCX format is known for its simplicity and ease of implementation, which contributed to its widespread adoption in the early days of personal computing. It was particularly popular for its use in software such as Microsoft Paintbrush, which later became Microsoft Paint, and was also used for screen captures, scanner output, and desktop wallpapers.

The PCX file format is designed to represent scanned images and other types of pictorial data. It supports various color depths, including monochrome, 2-color, 4-color, 16-color, 256-color, and 24-bit true color images. The format allows for a range of resolutions and aspect ratios, making it versatile for different display devices and printing requirements. Despite its flexibility, the PCX format has been largely superseded by more modern image formats such as JPEG, PNG, and GIF, which offer better compression and color support. However, understanding the PCX format is still relevant for those dealing with legacy systems or digital archives that contain PCX files.

A PCX file consists of a header, image data, and an optional 256-color palette. The header is 128 bytes long and contains important information about the image, such as the version of the PCX format used, the image dimensions, the number of color planes, the number of bits per pixel per color plane, and the encoding method. The encoding method used in PCX files is run-length encoding (RLE), which is a simple form of lossless data compression that reduces the file size without sacrificing image quality. RLE works by compressing sequences of identical bytes into a single byte followed by a count byte, which indicates the number of times the byte should be repeated.

The image data in a PCX file is organized into planes, with each plane representing a different color component. For example, a 24-bit color image would have three planes, one each for the red, green, and blue components. The data within each plane is encoded using RLE and is stored in rows, with each row representing a horizontal line of pixels. The rows are stored from top to bottom, and within each row, the pixels are stored from left to right. For images with a color depth of less than 24 bits, an additional palette section may be present at the end of the file, which defines the colors used in the image.

The optional 256-color palette is a key feature of the PCX format for images with 8 bits per pixel or less. This palette is typically located at the end of the file, following the image data, and consists of a series of 3-byte entries, with each entry representing the red, green, and blue components of a single color. The palette allows for a wide range of colors to be represented in the image, even though each pixel only references a color index rather than storing the full color value. This indexed color approach is efficient in terms of file size, but it limits the color fidelity compared to true color images.

One of the advantages of the PCX format is its simplicity, which made it easy for developers to implement in their software. The format's header is fixed in size and layout, which allows for straightforward parsing and processing of the image data. Additionally, the RLE compression used in PCX files is relatively simple compared to more complex compression algorithms used in other formats. This simplicity meant that PCX files could be easily generated and manipulated on the limited hardware of the time, without the need for extensive processing power or memory.

Despite its simplicity, the PCX format does have some limitations. One of the main drawbacks is its lack of support for transparency or alpha channels, which are essential for modern graphics work such as icon design or video game graphics. Additionally, the RLE compression, while effective for certain types of images, is not as efficient as the compression algorithms used in formats like JPEG or PNG. This can result in larger file sizes for PCX files, especially when dealing with high-resolution or true color images.

Another limitation of the PCX format is its lack of support for metadata. Unlike formats such as TIFF or JPEG, which can include a wide range of metadata about the image, such as the camera settings used to capture a photograph or the date and time the image was created, PCX files contain only the most basic information necessary to display the image. This makes the format less suitable for professional photography or any application where retaining such information is important.

Despite these limitations, the PCX format was widely used in the past and is still recognized by many image editing and viewing programs today. Its legacy is evident in the continued support for the format in software such as Adobe Photoshop, GIMP, and CorelDRAW. For users working with older systems or needing to access historical digital content, the ability to handle PCX files remains relevant. Additionally, the format's simplicity makes it a useful case study for those learning about image file formats and data compression techniques.

The PCX format also played a role in the early days of desktop publishing and graphic design. Its support for multiple resolutions and color depths made it a flexible choice for creating and exchanging graphics between different software and hardware platforms. At a time when proprietary formats could create barriers to collaboration, the PCX format served as a common denominator that facilitated the sharing of images across different systems.

In terms of technical implementation, creating a PCX file involves writing the 128-byte header with the correct values for the image's properties, followed by the RLE-compressed image data for each color plane. If the image uses a palette, the palette data is appended to the end of the file. When reading a PCX file, the process is reversed: the header is read to determine the image properties, the RLE data is decompressed to reconstruct the image, and if present, the palette is read to map the color indices to their corresponding RGB values.

The PCX header contains several fields that are critical for interpreting the image data. These include the manufacturer (always set to 10 for ZSoft), the version (indicating the version of the PCX format), the encoding (always set to 1 for RLE compression), the bits per pixel (indicating the color depth), the image dimensions (given by the Xmin, Ymin, Xmax, and Ymax fields), the horizontal and vertical resolutions, the number of color planes, the bytes per line (indicating the number of bytes in each row of a color plane), and a flag for grayscale images, among others.

The PCX format's RLE compression is designed to be efficient for images with large areas of uniform color, which was common in the computer graphics of the time. For example, an image with a large blue sky could be compressed effectively because the blue pixels would be represented by a single byte followed by a count byte, rather than storing each blue pixel individually. However, for images with more complex patterns or color variations, RLE compression is less effective, and the resulting file size may not be significantly smaller than the uncompressed image.

In conclusion, the PCX image format is a historical file format that played a significant role in the early days of personal computing and digital graphics. Its simplicity and ease of implementation made it a popular choice for software developers and users alike. While it has been largely replaced by more advanced image formats, the PCX format remains an important part of the digital legacy and continues to be supported by many modern graphics applications. Understanding the PCX format provides valuable insights into the evolution of digital imaging technology and the challenges of data compression and file format design.

Supported formats

AAI.aai

AAI Dune image

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Image File Format

AVS.avs

AVS X image

BAYER.bayer

Raw Bayer Image

BMP.bmp

Microsoft Windows bitmap image

CIN.cin

Cineon Image File

CLIP.clip

Image Clip Mask

CMYK.cmyk

Raw cyan, magenta, yellow, and black samples

CMYKA.cmyka

Raw cyan, magenta, yellow, black, and alpha samples

CUR.cur

Microsoft icon

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) image

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Encapsulated Portable Document Format

EPI.epi

Adobe Encapsulated PostScript Interchange format

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange format

EPT.ept

Encapsulated PostScript with TIFF preview

EPT2.ept2

Encapsulated PostScript Level II with TIFF preview

EXR.exr

High dynamic-range (HDR) image

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Flexible Image Transport System

GIF.gif

CompuServe graphics interchange format

GIF87.gif87

CompuServe graphics interchange format (version 87a)

GROUP4.group4

Raw CCITT Group4

HDR.hdr

High Dynamic Range image

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Microsoft icon

ICON.icon

Microsoft icon

IPL.ipl

IP2 Location Image

J2C.j2c

JPEG-2000 codestream

J2K.j2k

JPEG-2000 codestream

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 File Format Syntax

JPC.jpc

JPEG-2000 codestream

JPE.jpe

Joint Photographic Experts Group JFIF format

JPEG.jpeg

Joint Photographic Experts Group JFIF format

JPG.jpg

Joint Photographic Experts Group JFIF format

JPM.jpm

JPEG-2000 File Format Syntax

JPS.jps

Joint Photographic Experts Group JPS format

JPT.jpt

JPEG-2000 File Format Syntax

JXL.jxl

JPEG XL image

MAP.map

Multi-resolution Seamless Image Database (MrSID)

MAT.mat

MATLAB level 5 image format

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Common 2-dimensional bitmap format

PBM.pbm

Portable bitmap format (black and white)

PCD.pcd

Photo CD

PCDS.pcds

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer Format

PDF.pdf

Portable Document Format

PDFA.pdfa

Portable Document Archive Format

PFM.pfm

Portable float format

PGM.pgm

Portable graymap format (gray scale)

PGX.pgx

JPEG 2000 uncompressed format

PICON.picon

Personal Icon

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF format

PNG.png

Portable Network Graphics

PNG00.png00

PNG inheriting bit-depth, color-type from original image

PNG24.png24

Opaque or binary transparent 24-bit RGB (zlib 1.2.11)

PNG32.png32

Opaque or binary transparent 32-bit RGBA

PNG48.png48

Opaque or binary transparent 48-bit RGB

PNG64.png64

Opaque or binary transparent 64-bit RGBA

PNG8.png8

Opaque or binary transparent 8-bit indexed

PNM.pnm

Portable anymap

PPM.ppm

Portable pixmap format (color)

PS.ps

Adobe PostScript file

PSB.psb

Adobe Large Document Format

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

Raw red, green, and blue samples

RGBA.rgba

Raw red, green, blue, and alpha samples

RGBO.rgbo

Raw red, green, blue, and opacity samples

SIX.six

DEC SIXEL Graphics Format

SUN.sun

Sun Rasterfile

SVG.svg

Scalable Vector Graphics

SVGZ.svgz

Compressed Scalable Vector Graphics

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision Targa image

VIPS.vips

VIPS image

WBMP.wbmp

Wireless Bitmap (level 0) image

WEBP.webp

WebP Image Format

YUV.yuv

CCIR 601 4:1:1 or 4:2:2

Frequently asked questions

How does this work?

This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.

How long does it take to convert a file?

Conversions start instantly, and most files are converted in under a second. Larger files may take longer.

What happens to my files?

Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.

What file types can I convert?

We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.

How much does this cost?

This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.

Can I convert multiple files at once?

Yes! You can convert as many files as you want at once. Just select multiple files when you add them.