Optical Character Recognition (OCR) turns images of text—scans, smartphone photos, PDFs—into machine-readable strings and, increasingly, structured data. Modern OCR is a pipeline that cleans an image, finds text, reads it, and exports rich metadata so downstream systems can search, index, or extract fields. Two widely used output standards are hOCR, an HTML microformat for text and layout, and ALTO XML, a library/archives-oriented schema; both preserve positions, reading order, and other layout cues and are supported by popular engines like Tesseract.
Preprocessing. OCR quality starts with image cleanup: grayscale conversion, denoising, thresholding (binarization), and deskewing. Canonical OpenCV tutorials cover global, adaptive and Otsu thresholding—staples for documents with nonuniform lighting or bimodal histograms. When illumination varies within a page (think phone snaps), adaptive methods often outperform a single global threshold; Otsu automatically picks a threshold by analyzing the histogram. Tilt correction is equally important: Hough-based deskewing (Hough Line Transform) paired with Otsu binarization is a common and effective recipe in production preprocessing pipelines.
Detection vs. recognition. OCR is typically split into text detection (where is the text?) and text recognition (what does it say?). In natural scenes and many scans, fully convolutional detectors like EAST efficiently predict word- or line-level quadrilaterals without heavy proposal stages and are implemented in common toolkits (e.g., OpenCV’s text detection tutorial). On complex pages (newspapers, forms, books), segmentation of lines/regions and reading order inference matter:Kraken implements traditional zone/line segmentation and neural baseline segmentation, with explicit support for different scripts and directions (LTR/RTL/vertical).
Recognition models. The classic open-source workhorse Tesseract (open-sourced by Google, with roots at HP) evolved from a character classifier into an LSTM-based sequence recognizer and can emit searchable PDFs, hOCR/ALTO-friendly outputs, and more from the CLI. Modern recognizers rely on sequence modeling without pre-segmented characters. Connectionist Temporal Classification (CTC) remains foundational, learning alignments between input feature sequences and output label strings; it’s widely used in handwriting and scene-text pipelines.
In the last few years, Transformers reshaped OCR. TrOCR uses a vision Transformer encoder plus a text Transformer decoder, trained on large synthetic corpora then fine-tuned on real data, with strong performance across printed, handwritten and scene-text benchmarks (see also Hugging Face docs). In parallel, some systems sidestep OCR for downstream understanding: Donut (Document Understanding Transformer) is an OCR-free encoder-decoder that directly outputs structured answers (like key-value JSON) from document images (repo, model card), avoiding error accumulation when a separate OCR step feeds an IE system.
If you want batteries-included text reading across many scripts, EasyOCR offers a simple API with 80+ language models, returning boxes, text, and confidences—handy for prototypes and non-Latin scripts. For historical documents, Kraken shines with baseline segmentation and script-aware reading order; for flexible line-level training, Calamari builds on the Ocropy lineage (Ocropy) with (multi-)LSTM+CTC recognizers and a CLI for fine-tuning custom models.
Generalization hinges on data. For handwriting, the IAM Handwriting Database provides writer-diverse English sentences for training and evaluation; it’s a long-standing reference set for line and word recognition. For scene text, COCO-Text layered extensive annotations over MS-COCO, with labels for printed/handwritten, legible/illegible, script, and full transcriptions (see also the original project page). The field also relies heavily on synthetic pretraining: SynthText in the Wild renders text into photographs with realistic geometry and lighting, providing huge volumes of data to pretrain detectors and recognizers (reference code & data).
Competitions under ICDAR’s Robust Reading umbrella keep evaluation grounded. Recent tasks emphasize end-to-end detection/reading and include linking words into phrases, with official code reporting precision/recall/F-score, intersection-over-union (IoU), and character-level edit-distance metrics—mirroring what practitioners should track.
OCR rarely ends at plain text. Archives and digital libraries prefer ALTO XML because it encodes the physical layout (blocks/lines/words with coordinates) alongside content, and it pairs well with METS packaging. The hOCR microformat, by contrast, embeds the same idea into HTML/CSS using classes like ocr_line and ocrx_word, making it easy to display, edit, and transform with web tooling. Tesseract exposes both—e.g., generating hOCR or searchable PDFs directly from the CLI (PDF output guide); Python wrappers like pytesseract add convenience. Converters exist to translate between hOCR and ALTO when repositories have fixed ingestion standards—see this curated list of OCR file-format tools.
The strongest trend is convergence: detection, recognition, language modeling, and even task-specific decoding are merging into unified Transformer stacks. Pretraining on large synthetic corpora remains a force multiplier. OCR-free models will compete aggressively wherever the target is structured outputs rather than verbatim transcripts. Expect hybrid deployments too: a lightweight detector plus a TrOCR-style recognizer for long-form text, and a Donut-style model for forms and receipts.
Tesseract (GitHub) · Tesseract docs · hOCR spec · ALTO background · EAST detector · OpenCV text detection · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · IAM handwriting · OCR file-format tools · EasyOCR
Optical Character Recognition (OCR) is a technology used to convert different types of documents, such as scanned paper documents, PDF files or images captured by a digital camera, into editable and searchable data.
OCR works by scanning an input image or document, segmenting the image into individual characters, and comparing each character with a database of character shapes using pattern recognition or feature recognition.
OCR is used in a variety of sectors and applications, including digitizing printed documents, enabling text-to-speech services, automating data entry processes, and assisting visually impaired users to better interact with text.
While great advancements have been made in OCR technology, it isn't infallible. Accuracy can vary depending upon the quality of the original document and the specifics of the OCR software being used.
Although OCR is primarily designed for printed text, some advanced OCR systems are also able to recognize clear, consistent handwriting. However, typically handwriting recognition is less accurate because of the wide variation in individual writing styles.
Yes, many OCR software systems can recognize multiple languages. However, it's important to ensure that the specific language is supported by the software you're using.
OCR stands for Optical Character Recognition and is used for recognizing printed text, while ICR, or Intelligent Character Recognition, is more advanced and is used for recognizing hand-written text.
OCR works best with clear, easy-to-read fonts and standard text sizes. While it can work with various fonts and sizes, accuracy tends to decrease when dealing with unusual fonts or very small text sizes.
OCR can struggle with low-resolution documents, complex fonts, poorly printed texts, handwriting, and documents with backgrounds that interfere with the text. Also, while it can work with many languages, it may not cover every language perfectly.
Yes, OCR can scan colored text and backgrounds, although it's generally more effective with high-contrast color combinations, such as black text on a white background. The accuracy might decrease when text and background colors lack sufficient contrast.
The JPEG (Joint Photographic Experts Group) image format, commonly known as JPG, is a widely used method of lossy compression for digital images, particularly for those images produced by digital photography. The degree of compression can be adjusted, allowing a selectable trade-off between storage size and image quality. JPEG typically achieves 10:1 compression with little perceptible loss in image quality.
JPEG compression is used in a number of image file formats. JPEG/Exif is the most common image format used by digital cameras and other photographic image capture devices; along with JPEG/JFIF, it is the most common format for storing and transmitting photographic images on the World Wide Web. These format variations are often not distinguished, and are simply called JPEG.
The JPEG format includes a variety of standards, including JPEG/Exif, JPEG/JFIF, and JPEG 2000, which is a newer standard that offers better compression efficiency with higher computational complexity. The JPEG standard is complex, with various parts and profiles, but the most commonly used JPEG standard is the baseline JPEG, which is what most people are referring to when they mention 'JPEG' images.
The JPEG compression algorithm is at its core a discrete cosine transform (DCT) based compression technique. The DCT is a Fourier-related transform similar to the discrete Fourier transform (DFT), but using only cosine functions. The DCT is used because it has the property of concentrating most of the signal in the lower frequency region of the spectrum, which correlates well with the properties of natural images.
The JPEG compression process involves several steps. Initially, the image is converted from its original color space (usually RGB) to a different color space known as YCbCr. The YCbCr color space separates the image into a luminance component (Y), which represents the brightness levels, and two chrominance components (Cb and Cr), which represent the color information. This separation is beneficial because the human eye is more sensitive to variations in brightness than color, allowing more aggressive compression of the chrominance components without significantly affecting perceived image quality.
After color space conversion, the image is split into blocks, typically 8x8 pixels in size. Each block is then processed separately. For each block, the DCT is applied, which transforms the spatial domain data into frequency domain data. This step is crucial as it makes the image data more amenable to compression, as natural images tend to have low-frequency components that are more significant than high-frequency components.
Once the DCT is applied, the resulting coefficients are quantized. Quantization is the process of mapping a large set of input values to a smaller set, effectively reducing the number of bits needed to store them. This is the primary source of loss in JPEG compression. The quantization step is controlled by a quantization table, which determines how much compression is applied to each DCT coefficient. By adjusting the quantization table, users can trade off between image quality and file size.
After quantization, the coefficients are linearized by zigzag scanning, which orders them by increasing frequency. This step is important because it groups together low-frequency coefficients that are more likely to be significant, and high-frequency coefficients that are more likely to be zero or near-zero after quantization. This ordering facilitates the next step, which is entropy coding.
Entropy coding is a method of lossless compression that is applied to the quantized DCT coefficients. The most common form of entropy coding used in JPEG is Huffman coding, although arithmetic coding is also supported by the standard. Huffman coding works by assigning shorter codes to more frequent elements and longer codes to less frequent elements. Since natural images tend to have many zero or near-zero coefficients after quantization, especially in the high-frequency region, Huffman coding can significantly reduce the size of the compressed data.
The final step in the JPEG compression process is to store the compressed data in a file format. The most common format is the JPEG File Interchange Format (JFIF), which defines how to represent the compressed data and associated metadata, such as the quantization tables and Huffman code tables, in a file that can be decoded by a wide range of software. Another common format is the Exchangeable image file format (Exif), which is used by digital cameras and includes metadata such as camera settings and scene information.
JPEG files also include markers, which are code sequences that define certain parameters or actions in the file. These markers can indicate the start of an image, the end of an image, define quantization tables, specify Huffman code tables, and more. Markers are essential for the proper decoding of the JPEG image, as they provide the necessary information to reconstruct the image from the compressed data.
One of the key features of JPEG is its support for progressive encoding. In progressive JPEG, the image is encoded in multiple passes, each improving the image quality. This allows a low-quality version of the image to be displayed while the file is still being downloaded, which can be particularly useful for web images. Progressive JPEG files are generally larger than baseline JPEG files, but the difference in quality during loading can improve user experience.
Despite its widespread use, JPEG has some limitations. The lossy nature of the compression can lead to artifacts such as blocking, where the image may show visible squares, and 'ringing', where edges may be accompanied by spurious oscillations. These artifacts are more noticeable at higher compression levels. Additionally, JPEG is not well-suited for images with sharp edges or high contrast text, as the compression algorithm can blur edges and reduce readability.
To address some of the limitations of the original JPEG standard, JPEG 2000 was developed. JPEG 2000 offers several improvements over baseline JPEG, including better compression efficiency, support for lossless compression, and the ability to handle a wider range of image types effectively. However, JPEG 2000 has not seen widespread adoption compared to the original JPEG standard, largely due to the increased computational complexity and lack of support in some software and web browsers.
In conclusion, the JPEG image format is a complex but efficient method for compressing photographic images. Its widespread adoption is due to its flexibility in balancing image quality with file size, making it suitable for a variety of applications, from web graphics to professional photography. While it has its drawbacks, such as susceptibility to compression artifacts, its ease of use and support across a wide range of devices and software make it one of the most popular image formats in use today.
This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.
Conversions start instantly, and most files are converted in under a second. Larger files may take longer.
Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.
We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.
This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.
Yes! You can convert as many files as you want at once. Just select multiple files when you add them.