OCR any CLIP

Unlimited jobs. Filesizes up to 2.5GB. For free, forever.

All local

Our converter runs in your browser, so we never see your data.

Blazing fast

No uploading your files to a server—conversions start instantly.

Secure by default

Unlike other converters, your files are never uploaded to us.

OCR, or Optical Character Recognition, is a technology used to convert different types of documents, such as scanned paper documents, PDF files or images captured by a digital camera, into editable and searchable data.

In the first stage of OCR, an image of a text document is scanned. This could be a photo or a scanned document. The purpose of this stage is to make a digital copy of the document, instead of requiring manual transcription. Additionally, this digitization process can also help increase the longevity of materials because it can reduce the handling of fragile resources.

Once the document is digitized, the OCR software separates the image into individual characters for recognition. This is called the segmentation process. Segmentation breaks down the document into lines, words, and then ultimately individual characters. This division is a complex process because of the myriad factors involved -- different fonts, different sizes of text, and varying alignment of the text, just to name a few.

After segmentation, the OCR algorithm then uses pattern recognition to identify each individual character. For each character, the algorithm will compare it to a database of character shapes. The closest match is then selected as the character's identity. In feature recognition, a more advanced form of OCR, the algorithm not only examines the shape but also takes into account lines and curves in a pattern.

OCR has numerous practical applications -- from digitizing printed documents, enabling text-to-speech services, automating data entry processes, to even assisting visually impaired users to better interact with text. However, it is worth noting that the OCR process isn't infallible and may make mistakes especially when dealing with low-resolution documents, complex fonts, or poorly printed texts. Hence, accuracy of OCR systems varies significantly depending upon the quality of the original document and the specifics of the OCR software being used.

OCR is a pivotal technology in modern data extraction and digitization practices. It saves significant time and resources by mitigating the need for manual data entry and providing a reliable, efficient approach to transforming physical documents into a digital format.

Frequently Asked Questions

What is OCR?

Optical Character Recognition (OCR) is a technology used to convert different types of documents, such as scanned paper documents, PDF files or images captured by a digital camera, into editable and searchable data.

How does OCR work?

OCR works by scanning an input image or document, segmenting the image into individual characters, and comparing each character with a database of character shapes using pattern recognition or feature recognition.

What are some practical applications of OCR?

OCR is used in a variety of sectors and applications, including digitizing printed documents, enabling text-to-speech services, automating data entry processes, and assisting visually impaired users to better interact with text.

Is OCR always 100% accurate?

While great advancements have been made in OCR technology, it isn't infallible. Accuracy can vary depending upon the quality of the original document and the specifics of the OCR software being used.

Can OCR recognize handwriting?

Although OCR is primarily designed for printed text, some advanced OCR systems are also able to recognize clear, consistent handwriting. However, typically handwriting recognition is less accurate because of the wide variation in individual writing styles.

Can OCR handle multiple languages?

Yes, many OCR software systems can recognize multiple languages. However, it's important to ensure that the specific language is supported by the software you're using.

What's the difference between OCR and ICR?

OCR stands for Optical Character Recognition and is used for recognizing printed text, while ICR, or Intelligent Character Recognition, is more advanced and is used for recognizing hand-written text.

Does OCR work with any font and text size?

OCR works best with clear, easy-to-read fonts and standard text sizes. While it can work with various fonts and sizes, accuracy tends to decrease when dealing with unusual fonts or very small text sizes.

What are the limitations of OCR technology?

OCR can struggle with low-resolution documents, complex fonts, poorly printed texts, handwriting, and documents with backgrounds that interfere with the text. Also, while it can work with many languages, it may not cover every language perfectly.

Can OCR scan colored text or colored backgrounds?

Yes, OCR can scan colored text and backgrounds, although it's generally more effective with high-contrast color combinations, such as black text on a white background. The accuracy might decrease when text and background colors lack sufficient contrast.

What is the CLIP format?

Image Clip Mask

The CLIP (Coded Layer Image Processing) image format is a relatively new approach in the field of digital imaging, designed to offer both high efficiency in image coding and superior flexibility in image manipulation and editing. This image format utilizes advanced compression techniques and a unique layer-based structure to significantly reduce file sizes while preserving image quality. The advent of CLIP comes as a response to the increasing demand for more sophisticated image formats that can support the complexities of modern digital graphics, including extensive editing capabilities without the loss of quality typically associated with repeated compression and decompression cycles.

The fundamental principle behind the CLIP image format lies in its innovative use of a layered structure. Unlike traditional image formats such as JPEG or PNG, which treat an image as a single flat array of pixels, CLIP organizes the image into multiple layers. Each layer can represent different elements of the image, such as background, objects, text, and effects. This layered approach not only facilitates complex editing without affecting the rest of the image but also allows for more efficient compression, as each layer can be compressed independently according to its content complexity.

Compression is at the heart of the CLIP format's efficiency. CLIP employs a hybrid compression scheme that intelligently combines both lossy and lossless compression techniques. The choice between lossy and lossless compression is made on a layer-by-layer basis, depending on the nature of the content within each layer. For example, a layer containing detailed artwork may use lossless compression to preserve quality, while a layer with uniform colors might be more suited to lossy compression to achieve higher compression rates. This selective approach allows CLIP files to maintain high-quality imagery at significantly reduced file sizes.

In addition to its layered structure and hybrid compression algorithm, the CLIP image format incorporates advanced features designed to enhance image fidelity and editing capabilities. One such feature is the support for high dynamic range (HDR) imaging, which allows CLIP images to display a wider range of brightness and color than is possible with standard dynamic range (SDR) images. HDR support ensures that CLIP images can represent more realistic and vibrant scenes, making the format especially suitable for professional photography, digital art, and any application requiring high-quality visual representation.

Another noteworthy feature of the CLIP image format is its support for non-destructive editing. Thanks to its layered structure, edits made to a CLIP image can be saved as separate layers or as adjustments to existing layers. This means that the original image data can remain untouched, allowing users to revert changes or apply different edits without compromising the underlying quality. Non-destructive editing is a critical feature for professionals in graphic design, photography, and digital art, where the ability to experiment with different edits without degradation is essential.

The CLIP format is also designed with compatibility and interoperability in mind. It supports seamless integration with major graphics software and editing tools, making it easy for users to adopt the format into their existing workflows. Additionally, the format includes metadata support, which can store information about the image such as copyright details, camera settings, and editing history. This metadata layer enhances the utility of CLIP images for professional use, aiding in asset management and project coordination.

Despite its numerous advantages, the adoption of the CLIP image format faces challenges. The primary hurdle is the need for widespread support across software applications and platforms. For CLIP to become a widely accepted standard, developers of image editing software, web browsers, and graphic design tools must implement support for the format. This requires time and resources, which can be a deterrent, especially for well-established software with vast user bases. Furthermore, users may initially resist transitioning to a new format due to the inertia of habit and the potential need for learning new workflows or adopting new tools.

Another challenge is optimizing the balance between compression efficiency and image quality. While the hybrid compression technique of CLIP offers great promise, achieving the optimal balance for different types of content within an image can be complex. It requires sophisticated algorithms to analyze each layer's content and decide the most appropriate compression method. Additionally, the effectiveness of compression can vary depending on the specific nature of the image content, such as textures, colors, and patterns, posing a continuous challenge for further refinement of the format.

Despite these challenges, the future of the CLIP image format looks promising. With increasing awareness of its benefits and as more software vendors incorporate support for CLIP, we can expect to see broader adoption. The format's ability to offer high-quality, flexible editing options while keeping file sizes manageable addresses key needs in digital imaging today. Moreover, as digital cameras and displays continue to advance, offering higher resolutions and wider color gamuts, the demand for image formats that can efficiently handle these advancements without compromising on quality or editing functionality will only grow.

In conclusion, the CLIP image format represents a significant leap forward in digital imaging technology, offering a novel solution that combines high efficiency, superior editing capabilities, and robust support for modern imaging requirements. Its layered structure, flexible compression methods, and support for features like HDR and non-destructive editing make it particularly appealing to professionals in photography, graphic design, and digital art. While challenges to widespread adoption exist, ongoing developments and increasing support from the software community suggest that CLIP could play a crucial role in the future of digital imagery. As the digital landscape continues to evolve, the relevance and utility of the CLIP image format are poised to grow, marking it as a pivotal innovation in the quest for more sophisticated and efficient image processing tools.

Supported formats

AAI.aai

AAI Dune image

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Image File Format

AVS.avs

AVS X image

BAYER.bayer

Raw Bayer Image

BMP.bmp

Microsoft Windows bitmap image

CIN.cin

Cineon Image File

CLIP.clip

Image Clip Mask

CMYK.cmyk

Raw cyan, magenta, yellow, and black samples

CMYKA.cmyka

Raw cyan, magenta, yellow, black, and alpha samples

CUR.cur

Microsoft icon

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) image

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Encapsulated Portable Document Format

EPI.epi

Adobe Encapsulated PostScript Interchange format

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange format

EPT.ept

Encapsulated PostScript with TIFF preview

EPT2.ept2

Encapsulated PostScript Level II with TIFF preview

EXR.exr

High dynamic-range (HDR) image

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Flexible Image Transport System

GIF.gif

CompuServe graphics interchange format

GIF87.gif87

CompuServe graphics interchange format (version 87a)

GROUP4.group4

Raw CCITT Group4

HDR.hdr

High Dynamic Range image

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Microsoft icon

ICON.icon

Microsoft icon

IPL.ipl

IP2 Location Image

J2C.j2c

JPEG-2000 codestream

J2K.j2k

JPEG-2000 codestream

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 File Format Syntax

JPC.jpc

JPEG-2000 codestream

JPE.jpe

Joint Photographic Experts Group JFIF format

JPEG.jpeg

Joint Photographic Experts Group JFIF format

JPG.jpg

Joint Photographic Experts Group JFIF format

JPM.jpm

JPEG-2000 File Format Syntax

JPS.jps

Joint Photographic Experts Group JPS format

JPT.jpt

JPEG-2000 File Format Syntax

JXL.jxl

JPEG XL image

MAP.map

Multi-resolution Seamless Image Database (MrSID)

MAT.mat

MATLAB level 5 image format

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Common 2-dimensional bitmap format

PBM.pbm

Portable bitmap format (black and white)

PCD.pcd

Photo CD

PCDS.pcds

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer Format

PDF.pdf

Portable Document Format

PDFA.pdfa

Portable Document Archive Format

PFM.pfm

Portable float format

PGM.pgm

Portable graymap format (gray scale)

PGX.pgx

JPEG 2000 uncompressed format

PICON.picon

Personal Icon

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF format

PNG.png

Portable Network Graphics

PNG00.png00

PNG inheriting bit-depth, color-type from original image

PNG24.png24

Opaque or binary transparent 24-bit RGB (zlib 1.2.11)

PNG32.png32

Opaque or binary transparent 32-bit RGBA

PNG48.png48

Opaque or binary transparent 48-bit RGB

PNG64.png64

Opaque or binary transparent 64-bit RGBA

PNG8.png8

Opaque or binary transparent 8-bit indexed

PNM.pnm

Portable anymap

PPM.ppm

Portable pixmap format (color)

PS.ps

Adobe PostScript file

PSB.psb

Adobe Large Document Format

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

Raw red, green, and blue samples

RGBA.rgba

Raw red, green, blue, and alpha samples

RGBO.rgbo

Raw red, green, blue, and opacity samples

SIX.six

DEC SIXEL Graphics Format

SUN.sun

Sun Rasterfile

SVG.svg

Scalable Vector Graphics

SVGZ.svgz

Compressed Scalable Vector Graphics

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision Targa image

VIPS.vips

VIPS image

WBMP.wbmp

Wireless Bitmap (level 0) image

WEBP.webp

WebP Image Format

YUV.yuv

CCIR 601 4:1:1 or 4:2:2

Frequently asked questions

How does this work?

This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.

How long does it take to convert a file?

Conversions start instantly, and most files are converted in under a second. Larger files may take longer.

What happens to my files?

Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.

What file types can I convert?

We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.

How much does this cost?

This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.

Can I convert multiple files at once?

Yes! You can convert as many files as you want at once. Just select multiple files when you add them.