Optical Character Recognition (OCR) turns images of text—scans, smartphone photos, PDFs—into machine-readable strings and, increasingly, structured data. Modern OCR is a pipeline that cleans an image, finds text, reads it, and exports rich metadata so downstream systems can search, index, or extract fields. Two widely used output standards are hOCR, an HTML microformat for text and layout, and ALTO XML, a library/archives-oriented schema; both preserve positions, reading order, and other layout cues and are supported by popular engines like Tesseract.
Preprocessing. OCR quality starts with image cleanup: grayscale conversion, denoising, thresholding (binarization), and deskewing. Canonical OpenCV tutorials cover global, adaptive and Otsu thresholding—staples for documents with nonuniform lighting or bimodal histograms. When illumination varies within a page (think phone snaps), adaptive methods often outperform a single global threshold; Otsu automatically picks a threshold by analyzing the histogram. Tilt correction is equally important: Hough-based deskewing (Hough Line Transform) paired with Otsu binarization is a common and effective recipe in production preprocessing pipelines.
Detection vs. recognition. OCR is typically split into text detection (where is the text?) and text recognition (what does it say?). In natural scenes and many scans, fully convolutional detectors like EAST efficiently predict word- or line-level quadrilaterals without heavy proposal stages and are implemented in common toolkits (e.g., OpenCV’s text detection tutorial). On complex pages (newspapers, forms, books), segmentation of lines/regions and reading order inference matter:Kraken implements traditional zone/line segmentation and neural baseline segmentation, with explicit support for different scripts and directions (LTR/RTL/vertical).
Recognition models. The classic open-source workhorse Tesseract (open-sourced by Google, with roots at HP) evolved from a character classifier into an LSTM-based sequence recognizer and can emit searchable PDFs, hOCR/ALTO-friendly outputs, and more from the CLI. Modern recognizers rely on sequence modeling without pre-segmented characters. Connectionist Temporal Classification (CTC) remains foundational, learning alignments between input feature sequences and output label strings; it’s widely used in handwriting and scene-text pipelines.
In the last few years, Transformers reshaped OCR. TrOCR uses a vision Transformer encoder plus a text Transformer decoder, trained on large synthetic corpora then fine-tuned on real data, with strong performance across printed, handwritten and scene-text benchmarks (see also Hugging Face docs). In parallel, some systems sidestep OCR for downstream understanding: Donut (Document Understanding Transformer) is an OCR-free encoder-decoder that directly outputs structured answers (like key-value JSON) from document images (repo, model card), avoiding error accumulation when a separate OCR step feeds an IE system.
If you want batteries-included text reading across many scripts, EasyOCR offers a simple API with 80+ language models, returning boxes, text, and confidences—handy for prototypes and non-Latin scripts. For historical documents, Kraken shines with baseline segmentation and script-aware reading order; for flexible line-level training, Calamari builds on the Ocropy lineage (Ocropy) with (multi-)LSTM+CTC recognizers and a CLI for fine-tuning custom models.
Generalization hinges on data. For handwriting, the IAM Handwriting Database provides writer-diverse English sentences for training and evaluation; it’s a long-standing reference set for line and word recognition. For scene text, COCO-Text layered extensive annotations over MS-COCO, with labels for printed/handwritten, legible/illegible, script, and full transcriptions (see also the original project page). The field also relies heavily on synthetic pretraining: SynthText in the Wild renders text into photographs with realistic geometry and lighting, providing huge volumes of data to pretrain detectors and recognizers (reference code & data).
Competitions under ICDAR’s Robust Reading umbrella keep evaluation grounded. Recent tasks emphasize end-to-end detection/reading and include linking words into phrases, with official code reporting precision/recall/F-score, intersection-over-union (IoU), and character-level edit-distance metrics—mirroring what practitioners should track.
OCR rarely ends at plain text. Archives and digital libraries prefer ALTO XML because it encodes the physical layout (blocks/lines/words with coordinates) alongside content, and it pairs well with METS packaging. The hOCR microformat, by contrast, embeds the same idea into HTML/CSS using classes like ocr_line and ocrx_word, making it easy to display, edit, and transform with web tooling. Tesseract exposes both—e.g., generating hOCR or searchable PDFs directly from the CLI (PDF output guide); Python wrappers like pytesseract add convenience. Converters exist to translate between hOCR and ALTO when repositories have fixed ingestion standards—see this curated list of OCR file-format tools.
The strongest trend is convergence: detection, recognition, language modeling, and even task-specific decoding are merging into unified Transformer stacks. Pretraining on large synthetic corpora remains a force multiplier. OCR-free models will compete aggressively wherever the target is structured outputs rather than verbatim transcripts. Expect hybrid deployments too: a lightweight detector plus a TrOCR-style recognizer for long-form text, and a Donut-style model for forms and receipts.
Tesseract (GitHub) · Tesseract docs · hOCR spec · ALTO background · EAST detector · OpenCV text detection · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · IAM handwriting · OCR file-format tools · EasyOCR
Optical Character Recognition (OCR) is a technology used to convert different types of documents, such as scanned paper documents, PDF files or images captured by a digital camera, into editable and searchable data.
OCR works by scanning an input image or document, segmenting the image into individual characters, and comparing each character with a database of character shapes using pattern recognition or feature recognition.
OCR is used in a variety of sectors and applications, including digitizing printed documents, enabling text-to-speech services, automating data entry processes, and assisting visually impaired users to better interact with text.
While great advancements have been made in OCR technology, it isn't infallible. Accuracy can vary depending upon the quality of the original document and the specifics of the OCR software being used.
Although OCR is primarily designed for printed text, some advanced OCR systems are also able to recognize clear, consistent handwriting. However, typically handwriting recognition is less accurate because of the wide variation in individual writing styles.
Yes, many OCR software systems can recognize multiple languages. However, it's important to ensure that the specific language is supported by the software you're using.
OCR stands for Optical Character Recognition and is used for recognizing printed text, while ICR, or Intelligent Character Recognition, is more advanced and is used for recognizing hand-written text.
OCR works best with clear, easy-to-read fonts and standard text sizes. While it can work with various fonts and sizes, accuracy tends to decrease when dealing with unusual fonts or very small text sizes.
OCR can struggle with low-resolution documents, complex fonts, poorly printed texts, handwriting, and documents with backgrounds that interfere with the text. Also, while it can work with many languages, it may not cover every language perfectly.
Yes, OCR can scan colored text and backgrounds, although it's generally more effective with high-contrast color combinations, such as black text on a white background. The accuracy might decrease when text and background colors lack sufficient contrast.
AVIF (AV1 Image File Format) is a modern image file format that utilizes the AV1 video codec to provide superior compression efficiency compared to older formats like JPEG, PNG, and WebP. Developed by the Alliance for Open Media (AOMedia), AVIF aims to deliver high-quality images with smaller file sizes, making it an attractive choice for web developers and content creators looking to optimize their websites and applications.
At the core of AVIF is the AV1 video codec, which was designed as a royalty-free alternative to proprietary codecs like H.264 and HEVC. AV1 employs advanced compression techniques, such as intra-frame and inter-frame prediction, transform coding, and entropy coding, to achieve significant bitrate savings while maintaining visual quality. By leveraging AV1's intra-frame coding capabilities, AVIF can compress still images more efficiently than traditional formats.
One of the key features of AVIF is its support for both lossy and lossless compression. Lossy compression allows for higher compression ratios at the expense of some image quality, while lossless compression preserves the original image data without any loss of information. This flexibility enables developers to choose the appropriate compression mode based on their specific requirements, balancing file size and image fidelity.
AVIF also supports a wide range of color spaces and bit depths, making it suitable for various image types and use cases. It can handle both RGB and YUV color spaces, with bit depths ranging from 8 to 12 bits per channel. Additionally, AVIF supports high dynamic range (HDR) imaging, allowing for the representation of a broader range of luminance values and more vibrant colors. This capability is particularly beneficial for HDR displays and content.
Another significant advantage of AVIF is its ability to encode images with an alpha channel, enabling transparency. This feature is crucial for graphics and logos that require seamless integration with different background colors or patterns. AVIF's alpha channel support is more efficient compared to PNG, as it can compress the transparency information alongside the image data.
To create an AVIF image, the source image data is first divided into a grid of coding units, typically with a size of 64x64 pixels. Each coding unit is then further divided into smaller blocks, which are processed independently by the AV1 encoder. The encoder applies a sequence of compression techniques, such as prediction, transform coding, quantization, and entropy coding, to reduce the data size while preserving image quality.
During the prediction stage, the encoder uses intra-frame prediction to estimate the pixel values within a block based on the surrounding pixels. This process exploits spatial redundancy and helps to reduce the amount of data that needs to be encoded. Inter-frame prediction, which is used in video compression, is not applicable to still images like AVIF.
After prediction, the residual data (the difference between the predicted and actual pixel values) undergoes transform coding. The AV1 codec employs a set of discrete cosine transform (DCT) and asymmetric discrete sine transform (ADST) functions to convert the spatial domain data into the frequency domain. This step helps to concentrate the energy of the residual signal into fewer coefficients, making it more amenable to compression.
Quantization is then applied to the transformed coefficients to reduce the precision of the data. By discarding less significant information, quantization allows for higher compression ratios at the cost of some loss in image quality. The quantization parameters can be adjusted to control the trade-off between file size and image fidelity.
Finally, entropy coding techniques, such as arithmetic coding or variable-length coding, are used to compress the quantized coefficients further. These techniques assign shorter codes to more frequently occurring symbols, resulting in a more compact representation of the image data.
Once the encoding process is complete, the compressed image data is packaged into the AVIF container format, which includes metadata such as image dimensions, color space, and bit depth. The resulting AVIF file can then be stored or transmitted efficiently, taking up less storage space or bandwidth compared to other image formats.
To decode an AVIF image, the reverse process is followed. The decoder extracts the compressed image data from the AVIF container and applies entropy decoding to reconstruct the quantized coefficients. Inverse quantization and inverse transform coding are then performed to obtain the residual data. The predicted pixel values, derived from the intra-frame prediction, are added to the residual data to reconstruct the final image.
One of the challenges in adopting AVIF is its relatively recent introduction and limited browser support compared to established formats like JPEG and PNG. However, as more browsers and image processing tools begin to support AVIF natively, its adoption is expected to grow, driven by the increasing demand for efficient image compression.
To address compatibility issues, websites and applications can employ fallback mechanisms, serving AVIF images to compatible clients while providing alternative formats like JPEG or WebP for older browsers. This approach ensures that users can access the content regardless of their browser's support for AVIF.
In conclusion, AVIF is a promising image file format that leverages the power of the AV1 video codec to deliver superior compression efficiency. With its support for lossy and lossless compression, a wide range of color spaces and bit depths, HDR imaging, and alpha channel transparency, AVIF offers a versatile solution for optimizing images on the web. As browser support continues to expand and more tools embrace AVIF, it has the potential to become a preferred choice for developers and content creators seeking to reduce image file sizes without compromising visual quality.
This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.
Conversions start instantly, and most files are converted in under a second. Larger files may take longer.
Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.
We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.
This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.
Yes! You can convert as many files as you want at once. Just select multiple files when you add them.