Converter JXLs para GIFs

Ilimitadas conversões. Arquivos de até 2,5GB. Grátis, para sempre.

Todo local

Nosso conversor é executado no seu navegador, então nunca vemos seus dados.

Ultra rápido

Nenhum envio de arquivos para um servidor - as conversões começam instantaneamente.

Seguro por padrão

Ao contrário de outros conversores, seus arquivos nunca são enviados para nós.

O que é o formato JXL?

Imagem JPEG XL

O formato de imagem JPS, abreviação de JPEG Stereo, é um formato de arquivo usado para armazenar fotografias estereoscópicas tiradas por câmeras digitais ou criadas por software de renderização 3D. É essencialmente um arranjo lado a lado de duas imagens JPEG dentro de um único arquivo que, quando visualizado por meio de software ou hardware apropriado, fornece um efeito 3D. Este formato é particularmente útil para criar uma ilusão de profundidade em imagens, o que aprimora a experiência de visualização para usuários com sistemas de exibição compatíveis ou óculos 3D.

O formato JPS aproveita a técnica de compressão JPEG (Joint Photographic Experts Group) bem estabelecida para armazenar as duas imagens. JPEG é um método de compressão com perdas, o que significa que reduz o tamanho do arquivo descartando seletivamente informações menos importantes, geralmente sem uma diminuição perceptível na qualidade da imagem para o olho humano. Isso torna os arquivos JPS relativamente pequenos e gerenciáveis, apesar de conterem duas imagens em vez de uma.

Um arquivo JPS é essencialmente um arquivo JPEG com uma estrutura específica. Ele contém duas imagens compactadas em JPEG lado a lado dentro de um único quadro. Essas imagens são chamadas de imagens do olho esquerdo e do olho direito e representam perspectivas ligeiramente diferentes da mesma cena, imitando a ligeira diferença entre o que cada um dos nossos olhos vê. Essa diferença é o que permite a percepção de profundidade quando as imagens são visualizadas corretamente.

A resolução padrão para uma imagem JPS é normalmente o dobro da largura de uma imagem JPEG padrão para acomodar as imagens esquerda e direita. Por exemplo, se uma imagem JPEG padrão tiver uma resolução de 1920x1080 pixels, uma imagem JPS teria uma resolução de 3840x1080 pixels, com cada imagem lado a lado ocupando metade da largura total. No entanto, a resolução pode variar dependendo da origem da imagem e do uso pretendido.

Para visualizar uma imagem JPS em 3D, o visualizador deve usar um dispositivo de exibição ou software compatível que possa interpretar as imagens lado a lado e apresentá-las a cada olho separadamente. Isso pode ser alcançado por meio de vários métodos, como anaglifo 3D, onde as imagens são filtradas por cor e visualizadas com óculos coloridos; 3D polarizado, onde as imagens são projetadas por meio de filtros polarizados e visualizadas com óculos polarizados; ou obturador ativo 3D, onde as imagens são exibidas alternadamente e sincronizadas com óculos de obturador que abrem e fecham rapidamente para mostrar a cada olho a imagem correta.

A estrutura do arquivo de uma imagem JPS é semelhante à de um arquivo JPEG padrão. Ele contém um cabeçalho, que inclui o marcador SOI (Início da Imagem), seguido por uma série de segmentos que contêm várias partes de metadados e os próprios dados da imagem. Os segmentos incluem os marcadores APP (Aplicativo), que podem conter informações como os metadados Exif, e o segmento DQT (Definir Tabela de Quantização), que define as tabelas de quantização usadas para compactar os dados da imagem.

Um dos segmentos principais em um arquivo JPS é o segmento JFIF (Formato de Intercâmbio de Arquivo JPEG), que especifica que o arquivo está em conformidade com o padrão JFIF. Este segmento é importante para garantir compatibilidade com uma ampla gama de software e hardware. Ele também inclui informações como a proporção e a resolução da imagem em miniatura, que podem ser usadas para visualizações rápidas.

Os dados reais da imagem em um arquivo JPS são armazenados no segmento SOS (Início da Varredura), que segue o cabeçalho e os segmentos de metadados. Este segmento contém os dados da imagem compactada para as imagens esquerda e direita. Os dados são codificados usando o algoritmo de compressão JPEG, que envolve uma série de etapas, incluindo conversão de espaço de cor, subamostragem, transformada discreta de cosseno (DCT), quantização e codificação de entropia.

A conversão do espaço de cor é o processo de converter os dados da imagem do espaço de cor RGB, que é comumente usado em câmeras digitais e monitores de computador, para o espaço de cor YCbCr, que é usado na compressão JPEG. Esta conversão separa a imagem em um componente de luminância (Y), que representa os níveis de brilho, e dois componentes de crominância (Cb e Cr), que representam as informações de cor. Isso é benéfico para compressão porque o olho humano é mais sensível a mudanças de brilho do que de cor, permitindo uma compressão mais agressiva dos componentes de crominância sem afetar significativamente a qualidade da imagem percebida.

A subamostragem é um processo que aproveita a menor sensibilidade do olho humano aos detalhes de cor, reduzindo a resolução dos componentes de crominância em relação ao componente de luminância. As taxas de subamostragem comuns incluem 4:4:4 (sem subamostragem), 4:2:2 (reduzindo a resolução horizontal da crominância pela metade) e 4:2:0 (reduzindo a resolução horizontal e vertical da crominância pela metade). A escolha da taxa de subamostragem pode afetar o equilíbrio entre a qualidade da imagem e o tamanho do arquivo.

A transformada discreta de cosseno (DCT) é aplicada a pequenos blocos da imagem (normalmente 8x8 pixels) para converter os dados do domínio espacial no domínio da frequência. Esta etapa é crucial para a compressão JPEG porque permite a separação dos detalhes da imagem em componentes de importância variável, com componentes de frequência mais alta geralmente sendo menos perceptíveis ao olho humano. Esses componentes podem então ser quantizados, ou reduzidos em precisão, para obter compressão.

A quantização é o processo de mapear uma faixa de valores para um único valor quântico, reduzindo efetivamente a precisão dos coeficientes DCT. É aqui que a natureza com perdas da compressão JPEG entra em jogo, pois algumas informações da imagem são descartadas. O grau de quantização é determinado pelas tabelas de quantização especificadas no segmento DQT e pode ser ajustado para equilibrar a qualidade da imagem com o tamanho do arquivo.

A etapa final no processo de compressão JPEG é a codificação de entropia, que é uma forma de compressão sem perdas. O método mais comum usado em JPEG é a codificação Huffman, que atribui códigos mais curtos a valores mais frequentes e códigos mais longos a valores menos frequentes. Isso reduz o tamanho geral dos dados da imagem sem qualquer perda adicional de informações.

Além das técnicas de compressão JPEG padrão, o formato JPS também pode incluir metadados específicos relacionados à natureza estereoscópica das imagens. Esses metadados podem incluir informações sobre as configurações de paralaxe, pontos de convergência e quaisquer outros dados que possam ser necessários para exibir corretamente o efeito 3D. Esses metadados são normalmente armazenados nos segmentos APP do arquivo.

O formato JPS é suportado por uma variedade de aplicativos de software e dispositivos, incluindo televisores 3D, fones de ouvido VR e visualizadores de fotos especializados. No entanto, não é tão amplamente suportado quanto o formato JPEG padrão, portanto, os usuários podem precisar usar software específico ou converter os arquivos JPS para outro formato para maior compatibilidade.

Um dos desafios com o formato JPS é garantir que as imagens esquerda e direita estejam alinhadas corretamente e tenham a paralaxe correta. O desalinhamento ou a paralaxe incorreta podem levar a uma experiência de visualização desconfortável e podem causar cansaço visual ou dores de cabeça. Portanto, é importante que os fotógrafos e artistas 3D capturem ou criem cuidadosamente as imagens com os parâmetros estereoscópicos corretos.

Concluindo, o formato de imagem JPS é um formato de arquivo especializado projetado para armazenar e exibir imagens estereoscópicas. Ele se baseia nas técnicas de compressão JPEG estabelecidas para criar uma maneira compacta e eficiente de armazenar fotografias 3D. Embora ofereça uma experiência de visualização única, o formato requer hardware ou software compatível para visualizar as imagens em 3D e pode apresentar desafios em termos de alinhamento e paralaxe. Apesar desses desafios, o formato JPS continua sendo uma ferramenta valiosa para fotógrafos, artistas 3D e entusiastas que desejam capturar e compartilhar a profundidade e o realismo do mundo em um formato digital.

O que é o formato GIF?

Formato de intercâmbio de gráficos CompuServe

O Graphics Interchange Format (GIF) é um formato de imagem bitmap desenvolvido por uma equipe do provedor de serviços online CompuServe, liderada pelo cientista da computação americano Steve Wilhite em 15 de junho de 1987. Ele é notável por ser amplamente usado na World Wide Web devido ao seu amplo suporte e portabilidade. O formato suporta até 8 bits por pixel, permitindo que uma única imagem faça referência a uma paleta de até 256 cores distintas escolhidas do espaço de cores RGB de 24 bits. Ele também suporta animações e permite uma paleta separada de até 256 cores para cada quadro.

O formato GIF foi inicialmente criado para superar a limitação dos formatos de arquivo existentes, que não podiam armazenar com eficiência várias imagens coloridas bitmap. Com a crescente popularidade da internet, havia uma necessidade crescente de um formato que pudesse suportar imagens de alta qualidade com tamanhos de arquivo pequenos o suficiente para download em conexões lentas de internet. Os GIFs usam um algoritmo de compressão chamado LZW (Lempel-Ziv-Welch) para reduzir os tamanhos dos arquivos sem degradar a qualidade da imagem. Este algoritmo é uma forma de compressão de dados sem perdas que foi um fator-chave no sucesso do GIF.

A estrutura de um arquivo GIF é composta por vários blocos, que podem ser amplamente classificados em três categorias: o Bloco de Cabeçalho, que inclui a assinatura e a versão; o Descritor de Tela Lógica, que contém informações sobre a tela onde a imagem será renderizada, incluindo sua largura, altura e resolução de cor; e uma série de blocos que descrevem a própria imagem ou a sequência de animação. Esses últimos blocos incluem a Tabela de Cores Global, Tabela de Cores Local, Descritor de Imagem e Blocos de Extensão de Controle.

Uma das características mais distintas dos GIFs é sua capacidade de incluir várias imagens em um único arquivo, que são exibidas em sequência para criar um efeito de animação. Isso é obtido por meio do uso de blocos de Extensão de Controle Gráfico, que permitem a especificação de tempos de atraso entre os quadros, fornecendo controle sobre a velocidade da animação. Além disso, esses blocos podem ser usados para especificar transparência designando uma das cores na tabela de cores como transparente, o que permite a criação de animações com vários graus de opacidade.

Embora os GIFs sejam celebrados por sua simplicidade e ampla compatibilidade, o formato tem algumas limitações que estimularam o desenvolvimento e a adoção de formatos alternativos. A limitação mais significativa é a paleta de 256 cores, que pode resultar em uma redução perceptível na fidelidade de cores para imagens que contêm mais de 256 cores. Essa limitação torna os GIFs menos adequados para reproduzir fotografias coloridas e outras imagens com gradientes, onde formatos como JPEG ou PNG, que suportam milhões de cores, são preferidos.

Apesar dessas limitações, os GIFs permanecem prevalentes devido às suas características únicas que não são facilmente replicadas por outros formatos, particularmente seu suporte para animações. Antes do advento de tecnologias da web mais modernas, como animações CSS e JavaScript, os GIFs eram uma das maneiras mais fáceis de criar conteúdo animado para a web. Isso os ajudou a manter um caso de uso de nicho para web designers, profissionais de marketing e usuários de mídia social que precisavam de animações simples para transmitir informações ou capturar atenção.

O padrão para arquivos GIF evoluiu ao longo do tempo, com a versão original, GIF87a, sendo substituída pelo GIF89a em 1989. Este último introduziu vários aprimoramentos, incluindo a capacidade de especificar cores de fundo e a introdução da Extensão de Controle Gráfico, que tornou possível criar animações em loop. Apesar desses aprimoramentos, os aspectos centrais do formato, incluindo o uso do algoritmo de compressão LZW e seu suporte para até 8 bits por pixel, permaneceram inalterados.

Um aspecto controverso do formato GIF tem sido a patenteabilidade do algoritmo de compressão LZW. Em 1987, o United States Patent and Trademark Office emitiu uma patente para o algoritmo LZW para Unisys e IBM. Isso levou a controvérsias legais no final da década de 1990, quando a Unisys e a CompuServe anunciaram planos de cobrar taxas de licenciamento para software que criava arquivos GIF. A situação levou a críticas generalizadas da comunidade online e ao eventual desenvolvimento do formato Portable Network Graphics (PNG), que foi projetado como uma alternativa gratuita e aberta ao GIF que não usava compressão LZW.

Além das animações, o formato GIF é frequentemente usado para criar imagens pequenas e detalhadas para sites, como logotipos, ícones e botões. Sua compressão sem perdas garante que essas imagens mantenham sua nitidez e clareza, tornando o GIF uma excelente escolha para gráficos da web que requerem controle preciso de pixels. No entanto, para fotografias de alta resolução ou imagens com uma ampla gama de cores, o formato JPEG, que suporta compressão com perdas, é mais comumente usado porque pode reduzir significativamente os tamanhos dos arquivos, mantendo um nível aceitável de qualidade.

Apesar do surgimento de tecnologias e formatos avançados da web, os GIFs experimentaram um ressurgimento em popularidade nos últimos anos, particularmente em plataformas de mídia social. Eles são amplamente usados para memes, imagens de reação e vídeos curtos em loop. Esse ressurgimento pode ser atribuído a vários fatores, incluindo a facilidade de criação e compartilhamento de GIFs, a nostalgia associada ao formato e sua capacidade de transmitir emoções ou reações em um formato compacto e facilmente digerível.

O funcionamento técnico do formato GIF é relativamente simples, tornando-o acessível para programadores e não programadores. Uma compreensão profunda do formato envolve conhecimento de sua estrutura de blocos, a maneira como ele codifica cores por meio de paletas e seu uso do algoritmo de compressão LZW. Essa simplicidade tornou os GIFs não apenas fáceis de criar e manipular com uma variedade de ferramentas de software, mas também contribuiu para sua ampla adoção e relevância contínua no cenário digital em rápida evolução.

Olhando para o futuro, é claro que os GIFs continuarão a desempenhar um papel no ecossistema digital, apesar de suas limitações técnicas. Novos padrões e tecnologias da web, como HTML5 e vídeo WebM, oferecem alternativas para criar animações complexas e conteúdo de vídeo com maior profundidade e fidelidade de cores. No entanto, a onipresença do suporte a GIF em plataformas da web, combinada com a estética e o significado cultural únicos do formato, garante que ele permaneça uma ferramenta valiosa para expressar criatividade e humor online.

Em conclusão, o formato de imagem GIF, com sua longa história e mistura única de simplicidade, versatilidade e impacto cultural, ocupa um lugar especial no mundo da mídia digital. Apesar dos desafios técnicos que enfrenta e do surgimento de alternativas superiores em certos contextos, o GIF continua sendo um formato amado e amplamente usado. Seu papel em permitir a cultura visual da web inicial, democratizar a animação e facilitar uma nova linguagem de comunicação baseada em memes não pode ser exagerado. À medida que a tecnologia evolui, o GIF permanece como uma prova do poder duradouro de formatos digitais bem projetados para moldar a interação e a expressão online.

Formatos suportados

AAI.aai

Imagem AAI Dune

AI.ai

Adobe Illustrator CS2

AVIF.avif

Formato de arquivo de imagem AV1

AVS.avs

Imagem AVS X

BAYER.bayer

Imagem Bayer bruta

BMP.bmp

Imagem bitmap do Microsoft Windows

CIN.cin

Arquivo de imagem Cineon

CLIP.clip

Máscara de clip de imagem

CMYK.cmyk

Amostras brutas de ciano, magenta, amarelo e preto

CMYKA.cmyka

Amostras brutas de ciano, magenta, amarelo, preto e alfa

CUR.cur

Ícone do Microsoft

DCX.dcx

Paintbrush multi-página IBM PC da ZSoft

DDS.dds

Superfície Direta do Microsoft DirectDraw

DPX.dpx

Imagem SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Superfície Direta do Microsoft DirectDraw

EPDF.epdf

Formato Portátil de Documento Encapsulado

EPI.epi

Formato de Intercâmbio PostScript Encapsulado da Adobe

EPS.eps

PostScript Encapsulado da Adobe

EPSF.epsf

PostScript Encapsulado da Adobe

EPSI.epsi

Formato de Intercâmbio PostScript Encapsulado da Adobe

EPT.ept

PostScript Encapsulado com pré-visualização TIFF

EPT2.ept2

PostScript Nível II Encapsulado com pré-visualização TIFF

EXR.exr

Imagem de alto alcance dinâmico (HDR)

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Sistema de Transporte de Imagem Flexível

GIF.gif

Formato de intercâmbio de gráficos CompuServe

GIF87.gif87

Formato de intercâmbio de gráficos CompuServe (versão 87a)

GROUP4.group4

Grupo CCITT 4 bruto

HDR.hdr

Imagem de alta faixa dinâmica

HRZ.hrz

Televisão de varredura lenta

ICO.ico

Ícone Microsoft

ICON.icon

Ícone Microsoft

IPL.ipl

Imagem de Localização IP2

J2C.j2c

Fluxo JPEG-2000

J2K.j2k

Fluxo JPEG-2000

JNG.jng

Gráficos de Rede JPEG

JP2.jp2

Sintaxe de Formato de Arquivo JPEG-2000

JPC.jpc

Fluxo JPEG-2000

JPE.jpe

Formato JFIF do Grupo JPEG de Especialistas Fotográficos

JPEG.jpeg

Formato JFIF do Grupo JPEG de Especialistas Fotográficos

JPG.jpg

Formato JFIF do Grupo JPEG de Especialistas Fotográficos

JPM.jpm

Sintaxe de Formato de Arquivo JPEG-2000

JPS.jps

Formato JPS do Grupo JPEG de Especialistas Fotográficos

JPT.jpt

Sintaxe de Formato de Arquivo JPEG-2000

JXL.jxl

Imagem JPEG XL

MAP.map

Banco de dados de imagem contínua multi-resolução (MrSID)

MAT.mat

Formato de imagem MATLAB nível 5

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Formato bitmap 2D comum

PBM.pbm

Formato de bitmap portátil (preto e branco)

PCD.pcd

Photo CD

PCDS.pcds

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Formato Palm Database ImageViewer

PDF.pdf

Formato de Documento Portátil

PDFA.pdfa

Formato de Arquivo de Documento Portátil

PFM.pfm

Formato flutuante portátil

PGM.pgm

Formato portable graymap (escala de cinza)

PGX.pgx

Formato JPEG 2000 não compactado

PICON.picon

Ícone Pessoal

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Formato JFIF do Grupo JPEG de Especialistas Fotográficos

PNG.png

Portable Network Graphics

PNG00.png00

PNG herdando profundidade de bits, tipo de cor da imagem original

PNG24.png24

24 bits RGB (zlib 1.2.11) opaco ou transparente binário

PNG32.png32

32 bits RGBA opaco ou transparente binário

PNG48.png48

48 bits RGB opaco ou transparente binário

PNG64.png64

64 bits RGBA opaco ou transparente binário

PNG8.png8

8 bits indexado opaco ou transparente binário

PNM.pnm

Portable anymap

PPM.ppm

Formato pixmap portátil (cor)

PS.ps

Arquivo PostScript da Adobe

PSB.psb

Formato de Documento Grande da Adobe

PSD.psd

Bitmap do Photoshop da Adobe

RGB.rgb

Amostras brutas de vermelho, verde e azul

RGBA.rgba

Amostras brutas de vermelho, verde, azul e alfa

RGBO.rgbo

Amostras brutas de vermelho, verde, azul e opacidade

SIX.six

Formato Gráfico SIXEL DEC

SUN.sun

Sun Rasterfile

SVG.svg

Gráficos Vetoriais Escaláveis

SVGZ.svgz

Gráficos Vetoriais Escaláveis Compactados

TIFF.tiff

Formato de Arquivo de Imagem Etiquetada

VDA.vda

Imagem Truevision Targa

VIPS.vips

Imagem VIPS

WBMP.wbmp

Imagem sem fio Bitmap (nível 0)

WEBP.webp

Formato de imagem WebP

YUV.yuv

CCIR 601 4:1:1 ou 4:2:2

Perguntas frequentes

Como isso funciona?

Este conversor é executado inteiramente no seu navegador. Ao selecionar um arquivo, ele é carregado na memória e convertido para o formato selecionado. Você pode baixar o arquivo convertido.

Quanto tempo leva para converter um arquivo?

As conversões começam instantaneamente e a maioria dos arquivos são convertidos em menos de um segundo. Arquivos maiores podem levar mais tempo.

O que acontece com meus arquivos?

Seus arquivos nunca são enviados para nossos servidores. Eles são convertidos no seu navegador e o arquivo convertido é baixado. Nunca vemos seus arquivos.

Quais tipos de arquivo posso converter?

Suportamos a conversão entre todos os formatos de imagem, incluindo JPEG, PNG, GIF, WebP, SVG, BMP, TIFF e muito mais.

Quanto isso custa?

Este conversor é completamente gratuito e sempre será gratuito. Como ele é executado no seu navegador, não precisamos pagar por servidores, então não precisamos cobrar de você.

Posso converter vários arquivos de uma vez?

Sim! Você pode converter quantos arquivos quiser de uma vez. Basta selecionar vários arquivos ao adicioná-los.