EXIF (Exchangeable Image File Format) adalah blok metadata pengambilan gambar yang disematkan oleh kamera dan ponsel ke dalam file gambar—pencahayaan, lensa, stempel waktu, bahkan GPS—menggunakan sistem tag bergaya TIFF yang dikemas dalam format seperti JPEG dan TIFF. Ini penting untuk pencarian, penyortiran, dan otomatisasi di seluruh perpustakaan foto dan alur kerja, tetapi juga bisa menjadi jalur kebocoran yang tidak disengaja jika dibagikan sembarangan (ExifTool dan Exiv2 memudahkan pemeriksaan ini).
Pada tingkat rendah, EXIF menggunakan kembali struktur Image File Directory (IFD) TIFF dan, dalam JPEG, berada di dalam penanda APP1 (0xFFE1), yang secara efektif menyarangkan TIFF kecil di dalam wadah JPEG (gambaran umum JFIF; portal spesifikasi CIPA). Spesifikasi resmi—CIPA DC-008 (EXIF), saat ini versi 3.x—mendokumentasikan tata letak IFD, jenis tag, dan batasan (CIPA DC-008; ringkasan spesifikasi). EXIF mendefinisikan sub-IFD GPS khusus (tag 0x8825) dan IFD Interoperabilitas (0xA005) (tabel tag Exif).
Detail pengemasan penting. JPEG tipikal dimulai dengan segmen JFIF APP0, diikuti oleh EXIF di APP1; pembaca lama mengharapkan JFIF terlebih dahulu, sementara pustaka modern dapat mengurai keduanya (catatan segmen APP). Parser dunia nyata terkadang mengasumsikan urutan atau batas ukuran APP yang tidak disyaratkan oleh spesifikasi, itulah sebabnya penulis alat mendokumentasikan keanehan dan kasus tepi (panduan metadata Exiv2; dokumen ExifTool).
EXIF tidak terbatas pada JPEG/TIFF. Ekosistem PNG menstandarkan chunk eXIf untuk membawa EXIF dalam PNG (dukungan terus berkembang, dan urutan chunk relatif terhadap IDAT dapat menjadi masalah dalam beberapa implementasi). WebP, format berbasis RIFF, mengakomodasi EXIF, XMP, dan ICC dalam chunk khusus (wadah WebP RIFF; libwebp). Di platform Apple, Image I/O mempertahankan EXIF saat mengonversi ke HEIC/HEIF, bersama dengan XMP dan data produsen (kCGImagePropertyExifDictionary).
Jika Anda pernah bertanya-tanya bagaimana aplikasi menyimpulkan pengaturan kamera, peta tag EXIF adalah jawabannya: Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode, dan lainnya berada di sub-IFD utama dan EXIF (tag Exif; tag Exiv2). Apple mengekspos ini melalui konstanta Image I/O seperti ExifFNumber dan GPSDictionary. Di Android, AndroidX ExifInterface membaca/menulis EXIF di seluruh JPEG, PNG, WebP, dan HEIF.
Orientasi patut mendapat perhatian khusus. Sebagian besar perangkat menyimpan piksel "sebagaimana diambil" dan merekam tag yang memberi tahu aplikasi penampil cara memutarnya saat ditampilkan. Itulah tag 274 (Orientation) dengan nilai seperti 1 (normal), 6 (90° CW), 3 (180°), 8 (270°). Kegagalan untuk menghormati atau memperbarui tag ini menyebabkan foto miring, ketidakcocokan gambar mini, dan kesalahan machine learning pada proses selanjutnya (tag Orientasi; panduan praktis). Alur kerja sering melakukan normalisasi dengan memutar piksel secara fisik dan mengatur Orientation=1(ExifTool).
Pencatatan waktu lebih rumit dari kelihatannya. Tag historis seperti DateTimeOriginal tidak memiliki zona waktu, yang membuat pemotretan lintas batas menjadi ambigu. Tag yang lebih baru menambahkan pendamping zona waktu—misalnya, OffsetTimeOriginal—sehingga perangkat lunak dapat merekam DateTimeOriginal ditambah offset UTC (misalnya, -07:00) untuk pengurutan dan geokorelasi yang akurat (tag OffsetTime*;gambaran umum tag).
EXIF hidup berdampingan—dan terkadang tumpang tindih—dengan IPTC Photo Metadata (judul, pencipta, hak, subjek) dan XMP, kerangka kerja berbasis RDF Adobe yang distandarkan sebagai ISO 16684-1. Dalam praktiknya, perangkat lunak yang dirancang dengan baik merekonsiliasi EXIF yang dibuat kamera dengan IPTC/XMP yang dibuat pengguna tanpa membuang salah satunya (panduan IPTC;LoC tentang XMP;LoC tentang EXIF).
Privasi adalah tempat EXIF menjadi kontroversial. Geotag dan nomor seri perangkat telah membocorkan lokasi sensitif lebih dari sekali; contoh terkenalnya adalah foto 2012 Vice dari John McAfee, di mana koordinat GPS EXIF dilaporkan mengungkapkan keberadaannya (Wired;The Guardian). Banyak platform sosial menghapus sebagian besar EXIF saat diunggah, tetapi kebijakannya berbeda-beda dan berubah seiring waktu—verifikasi dengan mengunduh postingan Anda sendiri dan memeriksanya dengan alat (bantuan media Twitter;bantuan Facebook;bantuan Instagram).
Peneliti keamanan juga mengawasi parser EXIF dengan cermat. Kerentanan di pustaka yang banyak digunakan (misalnya, libexif) telah mencakup buffer overflow dan pembacaan di luar batas yang dipicu oleh tag yang salah format—mudah dibuat karena EXIF adalah biner terstruktur di tempat yang dapat diprediksi (advisories;pencarian NVD). Selalu perbarui pustaka metadata Anda dan lakukan sandbox pada pemrosesan gambar jika Anda memproses file yang tidak tepercaya.
Digunakan dengan bijaksana, EXIF adalah elemen penghubung yang memberdayakan katalog foto, alur kerja hak, dan pipeline visi komputer; digunakan secara naif, ini adalah jejak digital yang mungkin tidak ingin Anda bagikan. Kabar baiknya: ekosistem—spesifikasi, API OS, dan alat—memberi Anda kendali yang Anda butuhkan (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).
Data EXIF, atau Exchangeable Image File Format, mencakup berbagai metadata tentang foto seperti pengaturan kamera, tanggal dan waktu foto diambil, dan bahkan lokasi, jika GPS diaktifkan.
Kebanyakan penampil gambar dan editor (seperti Adobe Photoshop, Windows Photo Viewer, dll.) memungkinkan Anda melihat data EXIF. Anda hanya perlu membuka panel properti atau informasi.
Ya, data EXIF dapat diubah menggunakan program perangkat lunak tertentu seperti Adobe Photoshop, Lightroom, atau layanan online yang mudah digunakan. Anda dapat menyesuaikan atau menghapus bidang metadata EXIF tertentu dengan alat-alat ini.
Ya. Jika GPS diaktifkan, data lokasi yang tertanam dalam metadata EXIF dapat mengungkapkan informasi lokasi yang sensitif tentang di mana foto diambil. Oleh karena itu, disarankan untuk menghapus atau menyamarkan data ini saat berbagi foto.
Banyak program perangkat lunak memungkinkan Anda untuk menghapus data EXIF. Proses ini sering dikenal sebagai 'stripping' data EXIF. Ada juga beberapa alat online yang menawarkan fungsionalitas ini.
Kebanyakan platform media sosial seperti Facebook, Instagram, dan Twitter secara otomatis menghapus data EXIF dari gambar untuk menjaga privasi pengguna.
Data EXIF dapat mencakup model kamera, tanggal dan waktu pengambilan, panjang fokus, waktu eksposur, bukaan, pengaturan ISO, pengaturan keseimbangan putih, dan lokasi GPS, di antara detail lainnya.
Untuk fotografer, data EXIF dapat membantu memahami pengaturan tepat yang digunakan untuk foto tertentu. Informasi ini dapat membantu dalam memperbaiki teknik atau mereplikasi kondisi serupa dalam pemotretan di masa depan.
Tidak, hanya gambar yang diambil pada perangkat yang mendukung metadata EXIF, seperti kamera digital dan smartphone, yang akan berisi data EXIF.
Ya, data EXIF mengikuti standar yang ditetapkan oleh Japan Electronic Industries Development Association (JEIDA). Namun, produsen tertentu mungkin menyertakan informasi tambahan milik produsen.
YCbCrA adalah ruang warna dan format gambar yang umum digunakan untuk kompresi video dan gambar digital. Ini memisahkan informasi luma (kecerahan) dari informasi kroma (warna), yang memungkinkan keduanya dikompresi secara independen untuk pengkodean yang lebih efisien. Ruang warna YCbCrA adalah variasi dari ruang warna YCbCr yang menambahkan saluran alfa untuk transparansi.
Dalam ruang warna YCbCrA, Y mewakili komponen luma, yang merupakan kecerahan atau intensitas piksel. Ini dihitung sebagai jumlah tertimbang dari komponen warna merah, hijau, dan biru berdasarkan bagaimana mata manusia memandang kecerahan. Bobot dipilih untuk mendekati fungsi luminositas, yang menggambarkan sensitivitas spektral rata-rata persepsi visual manusia. Komponen luma menentukan kecerahan yang dirasakan dari sebuah piksel.
Cb dan Cr masing-masing adalah komponen kroma perbedaan biru dan perbedaan merah. Mereka mewakili informasi warna dalam gambar. Cb dihitung dengan mengurangkan luma dari komponen warna biru, sedangkan Cr dihitung dengan mengurangkan luma dari komponen warna merah. Dengan memisahkan informasi warna menjadi komponen perbedaan warna ini, YCbCrA memungkinkan informasi warna dikompresi lebih efisien dibandingkan dengan RGB.
Saluran alfa (A) dalam YCbCrA mewakili transparansi atau opasitas setiap piksel. Ini menentukan seberapa banyak warna piksel yang harus dicampur dengan latar belakang saat gambar dirender. Nilai alfa 0 berarti piksel benar-benar transparan, sedangkan nilai alfa 1 (atau 255 dalam representasi 8-bit) berarti piksel benar-benar buram. Nilai alfa antara 0 dan 1 menghasilkan piksel yang sebagian transparan yang menyatu dengan latar belakang dengan berbagai tingkat.
Salah satu keuntungan utama dari ruang warna YCbCrA adalah memungkinkan kompresi yang lebih efisien dibandingkan dengan RGB. Sistem visual manusia lebih sensitif terhadap perubahan kecerahan daripada perubahan warna. Dengan memisahkan informasi luma dan kroma, YCbCrA memungkinkan pengkode untuk mengalokasikan lebih banyak bit ke komponen luma, yang membawa informasi terpenting yang dapat dilihat, sambil mengompresi komponen kroma secara lebih agresif.
Selama kompresi, komponen luma dan kroma dapat disubsampling pada kecepatan yang berbeda. Subsampling mengurangi resolusi spasial komponen kroma sambil mempertahankan resolusi penuh komponen luma. Skema subsampling umum termasuk 4:4:4 (tanpa subsampling), 4:2:2 (kroma disubsampling secara horizontal dengan faktor 2), dan 4:2:0 (kroma disubsampling secara horizontal dan vertikal dengan faktor 2). Subsampling memanfaatkan sensitivitas visual manusia yang lebih rendah terhadap detail warna, yang memungkinkan rasio kompresi yang lebih tinggi tanpa kehilangan kualitas persepsi yang signifikan.
Format gambar YCbCrA banyak digunakan dalam standar kompresi video dan gambar seperti JPEG, MPEG, dan H.264/AVC. Standar ini menggunakan berbagai teknik untuk mengompresi data YCbCrA, termasuk subsampling kroma, transformasi kosinus diskrit (DCT), kuantisasi, dan pengkodean entropi.
Saat mengompresi bingkai gambar atau video, data YCbCrA mengalami serangkaian transformasi dan langkah kompresi. Gambar pertama-tama dikonversi dari RGB ke ruang warna YCbCrA. Komponen luma dan kroma kemudian dibagi menjadi blok, biasanya berukuran 8x8 atau 16x16 piksel. Setiap blok mengalami transformasi kosinus diskrit (DCT), yang mengubah nilai piksel spasial menjadi koefisien frekuensi.
Koefisien DCT kemudian dikuantisasi, yang membagi setiap koefisien dengan ukuran langkah kuantisasi dan membulatkan hasilnya ke bilangan bulat terdekat. Kuantisasi memperkenalkan kompresi lossy dengan membuang informasi frekuensi tinggi yang kurang penting secara persepsi. Ukuran langkah kuantisasi dapat disesuaikan untuk mengontrol pertukaran antara rasio kompresi dan kualitas gambar.
Setelah kuantisasi, koefisien diurutkan ulang dalam pola zig-zag untuk mengelompokkan koefisien frekuensi rendah, yang cenderung memiliki besaran yang lebih besar. Koefisien yang diurutkan ulang kemudian dikodekan entropi menggunakan teknik seperti pengkodean Huffman atau pengkodean aritmatika. Pengkodean entropi menetapkan kata kode yang lebih pendek untuk koefisien yang lebih sering muncul, yang selanjutnya mengurangi ukuran data terkompresi.
Untuk mendekompresi gambar YCbCrA, proses kebalikannya diterapkan. Data yang dikodekan entropi didekode untuk mengambil koefisien DCT yang dikuantisasi. Koefisien kemudian didekuantisasi dengan mengalikannya dengan ukuran langkah kuantisasi yang sesuai. DCT terbalik dilakukan pada koefisien yang didekuantisasi untuk merekonstruksi blok YCbCrA. Terakhir, data YCbCrA dikonversi kembali ke ruang warna RGB untuk ditampilkan atau diproses lebih lanjut.
Saluran alfa dalam YCbCrA biasanya dikompresi secara terpisah dari komponen luma dan kroma. Ini dapat dikodekan menggunakan berbagai metode, seperti pengkodean panjang lari atau kompresi berbasis blok. Saluran alfa memungkinkan efek transparansi, seperti melapiskan gambar atau video di atas satu sama lain dengan opasitas variabel.
YCbCrA menawarkan beberapa keunggulan dibandingkan ruang warna dan format gambar lainnya. Pemisahan informasi luma dan kroma memungkinkan kompresi yang lebih efisien, karena sistem visual manusia lebih sensitif terhadap variasi kecerahan daripada variasi warna. Subsampling komponen kroma semakin mengurangi jumlah data yang akan dikompresi tanpa berdampak signifikan pada kualitas persepsi.
Selain itu, kompatibilitas YCbCrA dengan standar kompresi populer seperti JPEG dan MPEG membuatnya banyak didukung di berbagai platform dan perangkat. Kemampuannya untuk menggabungkan saluran alfa untuk transparansi juga membuatnya cocok untuk aplikasi yang memerlukan pengomposisian atau pencampuran gambar.
Namun, YCbCrA bukannya tanpa batasan. Konversi dari RGB ke YCbCrA dan sebaliknya dapat menyebabkan beberapa distorsi warna, terutama jika komponen kroma dikompresi secara berlebihan. Subsampling komponen kroma juga dapat menyebabkan pendarahan warna atau artefak di area dengan transisi warna yang tajam.
Terlepas dari keterbatasan ini, YCbCrA tetap menjadi pilihan populer untuk kompresi gambar dan video karena efisiensinya dan dukungannya yang luas. Ini memberikan keseimbangan antara kinerja kompresi dan kualitas visual, membuatnya cocok untuk berbagai aplikasi, dari kamera digital dan streaming video hingga grafis dan game.
Seiring kemajuan teknologi, teknik dan format kompresi baru mungkin muncul untuk mengatasi keterbatasan YCbCrA dan memberikan efisiensi kompresi dan kualitas visual yang lebih baik. Namun, prinsip dasar pemisahan informasi luma dan kroma, subsampling, dan pengkodean transformasi kemungkinan akan tetap relevan dalam standar kompresi gambar dan video di masa mendatang.
Sebagai kesimpulan, YCbCrA adalah ruang warna dan format gambar yang menawarkan kompresi efisien dengan memisahkan informasi luma dan kroma dan memungkinkan subsampling kroma. Penyertaan saluran alfa untuk transparansi membuatnya serbaguna untuk berbagai aplikasi. Meskipun memiliki beberapa keterbatasan, kompatibilitas YCbCrA dengan standar kompresi populer dan keseimbangan antara kinerja kompresi dan kualitas visual menjadikannya pilihan yang banyak digunakan di bidang kompresi gambar dan video.
Konverter ini berjalan sepenuhnya di browser Anda. Saat Anda memilih file, file tersebut dibaca ke dalam memori dan dikonversi ke format yang dipilih. Anda kemudian dapat mengunduh file yang telah dikonversi.
Konversi dimulai secara instan, dan sebagian besar file dikonversi dalam waktu kurang dari satu detik. File yang lebih besar mungkin membutuhkan waktu lebih lama.
File Anda tidak pernah diunggah ke server kami. File tersebut dikonversi di browser Anda, dan file yang telah dikonversi kemudian diunduh. Kami tidak pernah melihat file Anda.
Kami mendukung konversi antara semua format gambar, termasuk JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, dan banyak lagi.
Konverter ini sepenuhnya gratis, dan akan selalu gratis. Karena berjalan di browser Anda, kami tidak perlu membayar server, jadi kami tidak perlu menagih Anda.
Ya! Anda dapat mengonversi file sebanyak yang Anda inginkan sekaligus. Cukup pilih beberapa file saat Anda menambahkannya.