Xóa nền tách một đối tượng khỏi môi trường xung quanh để bạn có thể đặt nó trên nền trong suốt, hoán đổi cảnh hoặc ghép nó vào một thiết kế mới. Về cơ bản, bạn đang ước tính một mặt n ạ alpha—độ mờ mỗi pixel từ 0 đến 1—và sau đó ghép alpha tiền cảnh lên một thứ khác. Đây là toán học từ Porter–Duff và là nguyên nhân của các cạm bẫy quen thuộc như “viền” và alpha thẳng và alpha nhân trước. Để có hướng dẫn thực tế về nhân trước và màu tuyến tính, hãy xem ghi chú Win2D của Microsoft, Søren Sandmann, và bài viết của Lomont về trộn tuyến tính.
Nếu bạn có thể kiểm soát việc chụp, hãy sơn phông nền bằng một màu đồng nhất (thường là màu xanh lá cây) và loại bỏ màu đó. Nó nhanh, đã được thử nghiệm trong phim và phát sóng, và lý tưởng cho video. Sự đánh đổi là ánh sáng và trang phục: ánh sáng màu tràn ra các cạnh (đặc biệt là tóc), vì vậy bạn sẽ sử dụng các công cụ khử tràn để trung hòa ô nhiễm. Các tài liệu tham khảo tốt bao gồm tài liệu của Nuke, Mixing Light, và một bản demo thực hành Fusion.
Đối với các hình ảnh đơn lẻ có nền lộn xộn, các thuật toán tương tác cần một vài gợi ý của người dùng—ví dụ: một hình chữ nhật lỏng lẻo hoặc các nét vẽ nguệch ngoạc—và hội tụ thành một mặt nạ sắc nét. Phương pháp kinh điển là GrabCut (chương sách), học các mô hình màu cho tiền cảnh/nền và sử dụng các đường cắt đồ thị lặp đi lặp lại để tách chúng. Bạn sẽ thấy những ý tưởng tương tự trong Lựa chọn tiền cảnh của GIMP dựa trên SIOX (plugin ImageJ).
Matting giải quyết độ trong suốt phân đoạn ở các ranh giới mỏng manh (tóc, lông, khói, kính). Matting dạng đóng cổ điển lấy một bản đồ ba vùng (chắc chắn-tiền cảnh/chắc chắn-nền/không xác định) và giải một hệ thống tuyến tính cho alpha với độ trung thực cạnh mạnh. Matting hình ảnh sâu hiện đại đào tạo các mạng nơ-ron trên bộ dữ liệu Adobe Composition-1K (tài liệu MMEditing), và được đánh giá bằng các số liệu như SAD, MSE, Gradient và Connectivity (giải thích điểm chuẩn).
Công việc phân đoạn liên quan cũng hữu ích: DeepLabv3+ tinh chỉnh các ranh giới bằng một bộ mã hóa-giải mã và các tích chập atrous (PDF); Mask R-CNN cung cấp các mặt nạ cho mỗi phiên bản (PDF); và SAM (Segment Anything) là một mô hình nền tảng có thể nhắc tạo ra các mặt nạ không cần học trên các hình ảnh không quen thuộc.
Công trình học thuật báo cáo các lỗi SAD, MSE, Gradient, và Connectivity trên Composition-1K. Nếu bạn đang chọn một mô hình, hãy tìm những số liệu đó (định nghĩa số liệu; phần số liệu của Background Matting). Đối với chân dung/video, MODNet và Background Matting V2 rất mạnh; đối với các hình ảnh “đối tượng nổi bật” chung, U2-Net là một đường cơ sở vững chắc; đối với độ trong suốt khó, FBA có thể sạch hơn.
**Định dạng ảnh xám di động (PGM)** là một định dạng được chấp nhận rộng rãi và được sử dụng trong xử lý ảnh và đồ họa máy tính để biểu diễn ảnh xám theo một định dạng đơn giản, không trang trí. Ý nghĩa của nó không chỉ nằm ở sự đơn giản mà còn ở tính linh hoạt và khả năng di động trên các nền tảng máy tính và hệ sinh thái phần mềm khác nhau. Một ảnh xám, trong bối cảnh của định dạng PGM, bao gồm các sắc thái xám khác nhau, trong đó mỗi pixel biểu diễn một giá trị cường độ từ đen đến trắng. Việc xây dựng tiêu chuẩn PGM chủ yếu hướng đến việc dễ dàng phân tích cú pháp và thao tác ảnh với chi phí tính toán tối thiểu, do đó làm cho nó đặc biệt phù hợp cho các tác vụ xử lý ảnh nhanh và mục đích giáo dục.
Cấu trúc của tệp PGM rất đơn giản, bao gồm một phần đầu theo sau là dữ liệu ảnh. Phần đầu được chia thành bốn phần: số ma thuật, xác định tệp là PGM và cho biết tệp ở định dạng nhị phân hay ASCII; kích thước của ảnh được chỉ định theo chiều rộng và chiều cao tính bằng pixel; giá trị xám tối đa, xác định phạm vi các giá trị cường độ có thể có cho mỗi pixel; và cuối cùng là các bình luận, là tùy chọn và có thể được đưa vào để cung cấp thông tin bổ sung về ảnh. Số ma thuật 'P2' biểu thị một PGM ASCII, trong khi 'P5' biểu thị một PGM nhị phân. Sự khác biệt này phù hợp với sự cân bằng giữa khả năng đọc của con người và hiệu quả lưu trữ.
Theo sau phần đầu, dữ liệu ảnh được phác thảo theo định dạng lưới tương ứng với kích thước pixel được chỉ định trong phần đầu. Trong một PGM ASCII (P2), giá trị cường độ của mỗi pixel được liệt kê ở dạng văn bản thuần túy, được sắp xếp từ góc trên cùng bên trái đến góc dưới cùng bên phải của ảnh và được phân tách bằng khoảng trắng. Các giá trị nằm trong khoảng từ 0, biểu thị màu đen, đến giá trị xám tối đa (được chỉ định trong phần đầu), biểu thị màu trắng. Khả năng đọc của định dạng này giúp dễ dàng chỉnh sửa và gỡ lỗi nhưng kém hiệu quả hơn về kích thước tệp và tốc độ phân tích cú pháp so với định dạng nhị phân của nó.
Mặt khác, các tệp PGM nhị phân (P5) mã hóa dữ liệu ảnh ở dạng nhỏ gọn hơn, sử dụng biểu diễn nhị phân cho các giá trị cường độ. Định dạng này làm giảm đáng kể kích thước tệp và cho phép các hoạt động đọc/ghi nhanh hơn, rất có lợi cho các ứng dụng xử lý khối lượng lớn ảnh hoặc yêu cầu hiệu suất cao. Tuy nhiên, sự đánh đổi là các tệp nhị phân không thể đọc được bằng con người và yêu cầu phần mềm chuyên dụng để xem và chỉnh sửa. Khi xử lý một PGM nhị phân, điều quan trọng là phải xử lý dữ liệu nhị phân một cách chính xác, có tính đến mã hóa của tệp và kiến trúc của hệ thống, đặc biệt là về tính endian.
Tính linh hoạt của định dạng PGM được thể hiện bằng tham số giá trị xám tối đa của nó trong phần đầu. Giá trị này quyết định độ sâu bit của ảnh, từ đó xác định phạm vi cường độ xám có thể được biểu diễn. Một lựa chọn phổ biến là 255, có nghĩa là mỗi pixel có thể lấy bất kỳ giá trị nào trong khoảng từ 0 đến 255, cho phép có 256 sắc thái xám riêng biệt trong một ảnh 8 bit. Cài đặt này đủ cho hầu hết các ứng dụng; tuy nhiên, định dạng PGM có thể chứa độ sâu bit cao hơn, chẳng hạn như 16 bit trên mỗi pixel, bằng cách tăng giá trị xám tối đa. Tính năng này cho phép biểu diễn các ảnh có độ chuyển màu cường độ mịn hơn, phù hợp cho các ứng dụng hình ảnh có dải động cao.
Tính đơn giản của định dạng PGM cũng mở rộng đến việc thao tác và xử lý của nó. Vì định dạng được ghi chép rõ ràng và thiếu các tính năng phức tạp được tìm thấy trong các định dạng ảnh tinh vi hơn, nên việc viết các chương trình để phân tích cú pháp, sửa đổi và tạo ảnh PGM có thể được thực hiện với các kỹ năng lập trình cơ bản. Khả năng tiếp cận này tạo điều kiện thuận lợi cho việc thử nghiệm và học tập trong xử lý ảnh, khiến PGM trở thành một lựa chọn phổ biến trong các khuôn khổ học thuật và trong số những người có sở thích. Hơn nữa, bản chất đơn giản của định dạng cho phép triển khai hiệu quả các thuật toán cho các tác vụ như lọc, phát hiện cạnh và điều chỉnh độ tương phản, góp phần vào việc sử dụng liên tục của nó trong cả nghiên cứu và ứng dụng thực tế.
Mặc dù có những điểm mạnh, định dạng PGM cũng có những hạn chế. Đáng chú ý nhất là việc thiếu hỗ trợ cho ảnh màu, vì nó vốn được thiết kế cho ảnh xám. Mặc dù đây không phải là một nhược điểm đối với các ứng dụng chỉ xử lý ảnh đơn sắc, nhưng đối với các tác vụ yêu cầu thông tin màu, người ta phải chuyển sang các định dạng anh em trong họ định dạng Netpbm, chẳng hạn như Định dạng ảnh di động (PPM) cho ảnh màu. Ngoài ra, tính đơn giản của định dạng PGM có nghĩa là nó không hỗ trợ các tính năng hiện đại như nén, lưu trữ siêu dữ liệu (ngoài các bình luận cơ bản) hoặc các lớp, có sẵn trong các định dạng phức tạp hơn như JPEG hoặc PNG. Hạn chế này có thể dẫn đến kích thước tệp lớn hơn đối với ảnh có độ phân giải cao và có khả năng hạn chế việc sử dụng nó trong một số ứng dụng nhất định.
Khả năng tương thích và dễ chuyển đổi của định dạng PGM với các định dạng khác là một trong những ưu điểm đáng chú ý của nó. Vì nó mã hóa dữ liệu ảnh theo cách đơn giản và được ghi chép rõ ràng, nên việc chuyển đổi ảnh PGM sang các định dạng khác hoặc ngược lại tương đối đơn giản. Khả năng này làm cho nó trở thành một định dạng trung gian tuyệt vời cho các đường ống xử lý ảnh, trong đó ảnh có thể có nguồn gốc từ nhiều định dạng khác nhau, được xử lý ở định dạng PGM vì lý do đơn giản và sau đó được chuyển đổi sang định dạng cuối cùng phù hợp để phân phối hoặc lưu trữ. Nhiều tiện ích và thư viện trên các ngôn ngữ lập trình khác nhau hỗ trợ các quy trình chuyển đổi này, củng cố vai trò của định dạng PGM trong một quy trình làm việc linh hoạt và có khả năng thích ứng.
Các cân nhắc về bảo mật đối với các tệp PGM thường xoay quanh các rủi ro liên quan đến việc phân tích cú pháp và xử lý các tệp được định dạng không đúng hoặc được tạo ra một cách độc hại. Do tính đơn giản của nó, định dạng PGM ít dễ bị các lỗ hổng cụ thể hơn so với các định dạng phức tạp hơn. Tuy nhiên, các ứng dụng phân tích cú pháp các tệp PGM vẫn nên triển khai xử lý lỗi mạnh mẽ để quản lý các đầu vào không mong muốn, chẳng hạn như thông tin phần đầu không chính xác, dữ liệu vượt quá kích thước mong đợi hoặc các giá trị nằm ngoài phạm vi hợp lệ. Đảm bảo xử lý an toàn các tệp PGM là rất quan trọng, đặc biệt là trong các ứng dụng chấp nhận ảnh do người dùng cung cấp, để ngăn chặn các lỗ hổng bảo mật tiềm ẩn.
Nhìn về phía trước, sự liên quan lâu dài của định dạng PGM trong một số lĩnh vực nhất định của ngành công nghệ, mặc dù có tính đơn giản và hạn chế, nhấn mạnh giá trị của các định dạng tệp đơn giản, được ghi chép rõ ràng. Vai trò của nó như một công cụ giảng dạy, sự phù hợp của nó cho các tác vụ xử lý ảnh nhanh và việc tạo điều kiện chuyển đổi định dạng ảnh minh họa cho tầm quan trọng của sự cân bằng giữa chức năng và độ phức tạp trong thiết kế định dạng tệp. Khi công nghệ phát triển, các định dạng ảnh mới với các tính năng nâng cao, khả năng nén tốt hơn và hỗ trợ các công nghệ hình ảnh mới chắc chắn sẽ xuất hiện. Tuy nhiên, di sản của định dạng PGM sẽ vẫn tồn tại, đóng vai trò là chuẩn mực cho thiết kế các định dạng trong tương lai, hướng tới sự kết hợp tối ưu giữa hiệu suất, tính đơn giản và khả năng di động.
Tóm lại, Định dạng ảnh xám di động (PGM) đại diện cho một tài sản vô giá trong lĩnh vực hình ảnh kỹ thuật số, bất chấp sự đơn giản của nó. Triết lý thiết kế của nó, tập trung vào tính dễ sử dụng, khả năng tiếp cận và sự đơn giản, đã đảm bảo sự liên quan liên tục của nó trong nhiều lĩnh vực khác nhau, từ giáo dục đến phát triển phần mềm. Bằng cách cho phép thao tác và xử lý hiệu quả các ảnh xám, định dạng PGM đã tự khẳng định mình là một yếu tố chính trong bộ công cụ của những người đam mê và chuyên gia xử lý ảnh. Cho dù được sử dụng vì giá trị giáo dục của nó, vai trò của nó trong các đường ống xử lý hay sự đơn giản của nó trong thao tác ảnh, định dạng PGM vẫn là minh chứng cho
Bộ chuyển đổi này chạy hoàn toàn trong trình duyệt của bạn. Khi bạn chọn một tệp, nó sẽ được đọc vào bộ nhớ và chuyển đổi sang định dạng đã chọn. Sau đó, bạn có thể tải xuống tệp đã chuyển đổi.
Việc chuyển đổi bắt đầu ngay lập tức và hầu hết các tệp được chuyển đổi trong vòng chưa đầy một giây. Các tệp lớn hơn có thể mất nhiều thời gian hơn.
Các tệp của bạn không bao giờ được tải lên máy chủ của chúng tôi. Chúng được chuyển đổi trong trình duyệt của bạn và sau đó tệp đã chuyển đổi sẽ được tải xuống. Chúng tôi không bao giờ thấy các tệp của bạn.
Chúng tôi hỗ trợ chuyển đổi giữa tất cả các định dạng hình ảnh, bao gồm JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, v.v.
Bộ chuyển đổi này hoàn toàn miễn phí và sẽ luôn miễn phí. Bởi vì nó chạy trong trình duyệt của bạn, chúng tôi không phải trả tiền cho máy chủ, vì vậy chúng tôi không cần tính phí bạn.
Đúng! Bạn có thể chuyển đổi bao nhiêu tệp tùy thích cùng một lúc. Chỉ cần chọn nhiều tệp khi bạn thêm chúng.