J2C Bộ loại bỏ nền

Loại bỏ nền từ bất kỳ hình ảnh nào trên trình duyệt của bạn. Miễn phí, mãi mãi.

Riêng tư và an toàn

Mọi thứ xảy ra trong trình duyệt của bạn. Các tệp của bạn không bao giờ chạm vào máy chủ của chúng tôi.

Nhanh như chớp

Không tải lên, không chờ đợi. Chuyển đổi ngay khi bạn thả một tệp.

Thực sự miễn phí

Không cần tài khoản. Không có chi phí ẩn. Không có thủ thuật kích thước tệp.

Xóa nền tách một đối tượng khỏi môi trường xung quanh để bạn có thể đặt nó trên nền trong suốt, hoán đổi cảnh hoặc ghép nó vào một thiết kế mới. Về cơ bản, bạn đang ước tính một mặt nạ alpha—độ mờ mỗi pixel từ 0 đến 1—và sau đó ghép alpha tiền cảnh lên một thứ khác. Đây là toán học từ Porter–Duff và là nguyên nhân của các cạm bẫy quen thuộc như “viền” và alpha thẳng và alpha nhân trước. Để có hướng dẫn thực tế về nhân trước và màu tuyến tính, hãy xem ghi chú Win2D của Microsoft, Søren Sandmann, và bài viết của Lomont về trộn tuyến tính.


Những cách chính mọi người xóa nền

1) Phím sắc độ (“màn hình xanh lá/xanh dương”)

Nếu bạn có thể kiểm soát việc chụp, hãy sơn phông nền bằng một màu đồng nhất (thường là màu xanh lá cây) và loại bỏ màu đó. Nó nhanh, đã được thử nghiệm trong phim và phát sóng, và lý tưởng cho video. Sự đánh đổi là ánh sáng và trang phục: ánh sáng màu tràn ra các cạnh (đặc biệt là tóc), vì vậy bạn sẽ sử dụng các công cụ khử tràn để trung hòa ô nhiễm. Các tài liệu tham khảo tốt bao gồm tài liệu của Nuke, Mixing Light, và một bản demo thực hành Fusion.

2) Phân đoạn tương tác (CV cổ điển)

Đối với các hình ảnh đơn lẻ có nền lộn xộn, các thuật toán tương tác cần một vài gợi ý của người dùng—ví dụ: một hình chữ nhật lỏng lẻo hoặc các nét vẽ nguệch ngoạc—và hội tụ thành một mặt nạ sắc nét. Phương pháp kinh điển là GrabCut (chương sách), học các mô hình màu cho tiền cảnh/nền và sử dụng các đường cắt đồ thị lặp đi lặp lại để tách chúng. Bạn sẽ thấy những ý tưởng tương tự trong Lựa chọn tiền cảnh của GIMP dựa trên SIOX (plugin ImageJ).

3) Matting hình ảnh (alpha hạt mịn)

Matting giải quyết độ trong suốt phân đoạn ở các ranh giới mỏng manh (tóc, lông, khói, kính). Matting dạng đóng cổ điển lấy một bản đồ ba vùng (chắc chắn-tiền cảnh/chắc chắn-nền/không xác định) và giải một hệ thống tuyến tính cho alpha với độ trung thực cạnh mạnh. Matting hình ảnh sâu hiện đại đào tạo các mạng nơ-ron trên bộ dữ liệu Adobe Composition-1K (tài liệu MMEditing), và được đánh giá bằng các số liệu như SAD, MSE, Gradient và Connectivity (giải thích điểm chuẩn).

4) Cắt bỏ bằng học sâu (không có bản đồ ba vùng)

  • U2-Net (phát hiện đối tượng nổi bật) là một công cụ “xóa nền” chung mạnh mẽ (repo).
  • MODNet nhắm đến matting chân dung thời gian thực (PDF).
  • F, B, Alpha (FBA) Matting dự đoán đồng thời tiền cảnh, nền và alpha để giảm quầng màu (repo).
  • Background Matting V2 giả định một tấm nền và tạo ra các mặt nạ cấp độ sợi tóc trong thời gian thực ở tốc độ lên tới 4K/30fps (trang dự án, repo).

Công việc phân đoạn liên quan cũng hữu ích: DeepLabv3+ tinh chỉnh các ranh giới bằng một bộ mã hóa-giải mã và các tích chập atrous (PDF); Mask R-CNN cung cấp các mặt nạ cho mỗi phiên bản (PDF); và SAM (Segment Anything) là một mô hình nền tảng có thể nhắc tạo ra các mặt nạ không cần học trên các hình ảnh không quen thuộc.


Các công cụ phổ biến làm gì


Mẹo quy trình làm việc để cắt bỏ sạch hơn

  1. Chụp ảnh thông minh. Ánh sáng tốt và độ tương phản đối tượng-nền mạnh giúp ích cho mọi phương pháp. Với màn hình xanh lá/xanh dương, hãy lên kế hoạch khử tràn (hướng dẫn).
  2. Bắt đầu rộng, tinh chỉnh hẹp. Chạy lựa chọn tự động (Chọn đối tượng, U2-Net, SAM), sau đó tinh chỉnh các cạnh bằng bút vẽ hoặc matting (ví dụ: dạng đóng).
  3. Lưu ý đến độ bán trong suốt. Kính, mạng che mặt, nhòe chuyển động, tóc bay cần alpha thực sự (không chỉ là mặt nạ cứng). Các phương pháp cũng phục hồi F/B/α giảm thiểu quầng sáng.
  4. Biết alpha của bạn. Thẳng và nhân trước tạo ra hành vi cạnh khác nhau; xuất/ghép nhất quán (xem tổng quan, Hargreaves).
  5. Chọn đầu ra phù hợp. Đối với “không có nền”, hãy cung cấp một raster có alpha sạch (ví dụ: PNG/WebP) hoặc giữ các tệp được phân lớp có mặt nạ nếu dự kiến có các chỉnh sửa tiếp theo. Chìa khóa là chất lượng của alpha bạn đã tính toán—bắt nguồn từ Porter–Duff.

Chất lượng và đánh giá

Công trình học thuật báo cáo các lỗi SAD, MSE, Gradient, và Connectivity trên Composition-1K. Nếu bạn đang chọn một mô hình, hãy tìm những số liệu đó (định nghĩa số liệu; phần số liệu của Background Matting). Đối với chân dung/video, MODNet Background Matting V2 rất mạnh; đối với các hình ảnh “đối tượng nổi bật” chung, U2-Net là một đường cơ sở vững chắc; đối với độ trong suốt khó, FBA có thể sạch hơn.


Các trường hợp cạnh phổ biến (và các bản sửa lỗi)

  • Tóc và lông: ưu tiên matting (bản đồ ba vùng hoặc matting chân dung như MODNet) và kiểm tra trên bàn cờ.
  • Cấu trúc tinh xảo (nan hoa xe đạp, dây câu): sử dụng đầu vào có độ phân giải cao và một bộ phân đoạn nhận biết ranh giới như DeepLabv3+ làm bước tiền xử lý trước khi matting.
  • Những thứ trong suốt (khói, kính): bạn cần alpha phân đoạn và thường là ước tính màu tiền cảnh (FBA).
  • Hội nghị truyền hình: nếu bạn có thể chụp một tấm nền sạch, Background Matting V2 trông tự nhiên hơn so với các nút chuyển đổi “nền ảo” ngây thơ.

Nơi điều này xuất hiện trong thế giới thực

  • Thương mại điện tử: các thị trường (ví dụ: Amazon) thường yêu cầu nền hình ảnh chính trắng tinh; xem Hướng dẫn hình ảnh sản phẩm (RGB 255,255,255).
  • Công cụ thiết kế: Trình xóa nền của Canva và Xóa nền của Photoshop hợp lý hóa việc cắt bỏ nhanh chóng.
  • Sự tiện lợi trên thiết bị:Nâng đối tượng” của iOS/macOS rất phù hợp để chia sẻ thông thường.

Tại sao đôi khi các vết cắt trông giả (và các bản sửa lỗi)

  • Tràn màu: ánh sáng xanh lá/xanh dương bao quanh đối tượng—sử dụng điều khiển khử tràn hoặc thay thế màu được nhắm mục tiêu.
  • Quầng sáng/viền: thường là do không khớp diễn giải alpha (thẳng và nhân trước) hoặc các pixel cạnh bị ô nhiễm bởi nền cũ; chuyển đổi/diễn giải chính xác (tổng quan, chi tiết).
  • Làm mờ/nhiễu hạt sai: dán một đối tượng sắc nét như dao cạo vào một nền mềm và nó sẽ nổi bật; khớp độ mờ của ống kính và nhiễu hạt sau khi ghép (xem khái niệm cơ bản về Porter–Duff).

Sách hướng dẫn TL;DR

  1. Nếu bạn kiểm soát việc chụp: sử dụng phím sắc độ; chiếu sáng đều; lên kế hoạch khử tràn.
  2. Nếu đó là một bức ảnh dùng một lần: hãy thử Xóa nền của Photoshop, trình xóa của Canva, hoặc remove.bg; tinh chỉnh bằng bút vẽ/matting cho tóc.
  3. Nếu bạn cần các cạnh cấp sản xuất: sử dụng matting ( dạng đóng hoặc sâu) và kiểm tra alpha trên nền trong suốt; lưu ý đến diễn giải alpha.
  4. Đối với chân dung/video: hãy xem xét MODNet hoặc Background Matting V2; đối với phân đoạn có hướng dẫn bằng cách nhấp chuột, SAM là một giao diện người dùng mạnh mẽ.

Định dạng J2C là gì?

Dòng mã JPEG-2000

ISOBRL ảnh định dạng là một định dạng tập tin chuyên dụng được thiết kế để đại diện cho đồ họa xúc giác cho người khiếm thị. Đồ họa xúc giác là hình ảnh sử dụng bề mặt nổi để người mù hoặc thị lực kém có thể cảm nhận được. ISOBRL là viết tắt của ISO Braille, cho biết định dạng này được chuẩn hóa bởi Tổ chức Tiêu chuẩn hóa Quốc tế (ISO) và có liên quan chặt chẽ đến Braille, hệ thống chữ viết xúc giác được sử dụng bởi những người khiếm thị. Định dạng ISOBRL là một công cụ quan trọng cho khả năng truy cập, cung cấp một cách chuẩn hóa để tạo và phân phối đồ họa xúc giác có thể được in bằng máy dập nổi Braille hoặc các thiết bị in xúc giác khác.

Các tệp ISOBRL thường được tạo bằng phần mềm chuyên dụng cho phép nhà thiết kế chuyển đổi hình ảnh trực quan thành định dạng có thể được diễn giải thông qua cảm ứng. Phần mềm này thường bao gồm các công cụ để đơn giản hóa và sửa đổi hình ảnh để làm cho chúng dễ đọc hơn dưới dạng đồ họa xúc giác. Ví dụ: nó có thể giảm số lượng đường trong bản vẽ hoặc tăng độ tương phản giữa các phần tử khác nhau để làm cho chúng dễ phân biệt hơn khi chạm vào. Sau đó, phần mềm lưu hình ảnh ở định dạng ISOBRL, bao gồm thông tin về chiều cao và kết cấu của các phần tử nổi, cũng như cách sắp xếp không gian của chúng.

Định dạng ISOBRL được thiết kế để có thể đọc được bằng máy và đọc được bằng con người. Nó bao gồm siêu dữ liệu mô tả hình ảnh, chẳng hạn như tiêu đề, tên người tạo và mô tả văn bản về hình ảnh. Siêu dữ liệu này rất quan trọng vì nó cho phép người dùng hiểu bối cảnh của hình ảnh và có thể được đọc bởi trình đọc màn hình hoặc các công nghệ hỗ trợ khác. Định dạng này cũng bao gồm một cách chuẩn hóa để thể hiện các kết cấu và hoa văn khác nhau, có thể truyền đạt thông tin bổ sung cho người dùng thông qua cảm ứng.

Một trong những tính năng chính của định dạng ISOBRL là khả năng mở rộng của nó. Đồ họa xúc giác cần phải đủ lớn để người dùng có thể cảm nhận các chi tiết bằng đầu ngón tay, nhưng chúng cũng cần phải vừa với giấy Braille kích thước chuẩn. Định dạng ISOBRL cho phép hình ảnh được thu phóng lên hoặc xuống mà không mất chi tiết, nghĩa là cùng một tệp có thể được in ở các kích thước khác nhau để phù hợp với người dùng khác nhau hoặc các thiết bị in khác nhau. Khả năng mở rộng này đạt được thông qua việc sử dụng đồ họa vector, biểu diễn hình ảnh bằng các phương trình toán học chứ không phải pixel.

Đồ họa vector lý tưởng cho hình ảnh xúc giác vì chúng có thể được thay đổi kích thước mà không bị mờ hoặc pixel. Trong định dạng ISOBRL, các đường thẳng, đường cong và các hình dạng khác được xác định bởi các thuộc tính hình học của chúng, chẳng hạn như tọa độ của các điểm cuối và bán kính của các đường cong của chúng. Điều này cho phép hình ảnh được hiển thị ở bất kỳ kích thước nào trong khi vẫn giữ được các cạnh sắc nét và kết cấu rõ ràng. Việc sử dụng đồ họa vector cũng làm cho định dạng ISOBRL hiệu quả hơn, vì nó thường dẫn đến kích thước tệp nhỏ hơn so với hình ảnh raster, phải lưu trữ thông tin cho từng pixel riêng lẻ.

Một khía cạnh quan trọng khác của định dạng ISOBRL là hỗ trợ phân lớp của nó. Đồ họa xúc giác thường cần truyền đạt thông tin phức tạp, chẳng hạn như bản đồ hoặc sơ đồ, có thể khó diễn giải nếu tất cả các phần tử được in ở cùng một độ cao. Định dạng ISOBRL cho phép các nhà thiết kế tạo nhiều lớp trong một hình ảnh, mỗi lớp có chiều cao và kết cấu riêng. Điều này giúp có thể biểu diễn các loại thông tin khác nhau bằng các cảm giác xúc giác khác nhau, giúp hình ảnh dễ hiểu hơn khi chạm vào.

Hệ thống phân lớp trong ISOBRL cũng hỗ trợ tính trong suốt, nghĩa là các lớp dưới có thể nhìn thấy một phần hoặc toàn bộ bên dưới các lớp trên. Điều này có thể được sử dụng để tạo các hiệu ứng như đổ bóng hoặc để hiển thị mối quan hệ giữa các phần tử khác nhau trong hình ảnh. Ví dụ: trên bản đồ, đường có thể được biểu diễn trên một lớp, trong khi các vùng nước nằm trên một lớp khác và hai lớp này có thể chồng lên nhau mà không che khuất nhau. Tính trong suốt trong đồ họa xúc giác tương tự như tính trong suốt trực quan trong hình ảnh truyền thống, cung cấp một cách để truyền đạt độ sâu và độ phức tạp.

Các tệp ISOBRL cũng được thiết kế để tương tác. Chúng có thể bao gồm các siêu liên kết đến các tệp ISOBRL khác hoặc đến các tài nguyên bên ngoài, chẳng hạn như mô tả âm thanh của hình ảnh. Tính tương tác này rất quan trọng đối với các tài liệu giáo dục, trong đó đồ họa xúc giác có thể là một phần của một tập hợp tài nguyên lớn hơn. Người dùng có thể điều hướng giữa các hình ảnh khác nhau hoặc truy cập thông tin bổ sung bằng cách theo các liên kết này, được nhúng trong tệp ISOBRL và có thể được kích hoạt bằng thiết bị đọc xúc giác có chức năng phù hợp.

Việc tạo các tệp ISOBRL không chỉ là một quá trình kỹ thuật; nó cũng đòi hỏi sự hiểu biết về cách những người khiếm thị nhận thức đồ họa xúc giác. Các nhà thiết kế phải xem xét các yếu tố như khoảng cách giữa các phần tử nổi, chiều cao của các phần tử đó và độ phức tạp tổng thể của hình ảnh. Họ cũng phải nhận thức được những hạn chế của các thiết bị in xúc giác, có thể không thể tái tạo các chi tiết rất tinh tế. Do đó, việc tạo đồ họa xúc giác hiệu quả ở định dạng ISOBRL là một kỹ năng kết hợp kiến thức kỹ thuật với sự hiểu biết sâu sắc về khả năng truy cập và trải nghiệm người dùng.

Để đảm bảo rằng các tệp ISOBRL có thể truy cập được với nhiều người dùng nhất có thể, định dạng này được thiết kế để tương thích với nhiều thiết bị in xúc giác. Điều này bao gồm máy dập nổi Braille, tạo các chấm nổi trên giấy, cũng như các thiết bị tiên tiến hơn có thể tạo ra nhiều kết cấu và chiều cao khác nhau. Định dạng ISOBRL chỉ định chiều cao tối thiểu và tối đa cho các phần tử nổi, cũng như độ phân giải của kết cấu, để đảm bảo rằng hình ảnh có thể được in chính xác trên các thiết bị khác nhau.

Định dạng ISOBRL cũng bao gồm các tính năng sửa lỗi để đảm bảo rằng các tệp có thể được in chính xác ngay cả khi chúng được truyền qua các mạng không đáng tin cậy hoặc được lưu trữ trên phương tiện có thể bị xuống cấp theo thời gian. Điều này đặc biệt quan trọng đối với các thư viện và các tổ chức khác phân phối đồ họa xúc giác cho người dùng ở các địa điểm khác nhau. Các cơ chế sửa lỗi trong các tệp ISOBRL có thể phát hiện và sửa chữa các lỗi nhỏ, đảm bảo rằng đồ họa xúc giác vẫn có thể sử dụng được.

Ngoài các tính năng kỹ thuật của nó, định dạng ISOBRL cũng được thiết kế để mở và có thể mở rộng. Nó dựa trên các tiêu chuẩn mở, có nghĩa là nó có thể được triển khai bởi bất kỳ ai mà không cần phần mềm hoặc giấy phép độc quyền. Sự cởi mở này khuyến khích phát triển các công cụ và dịch vụ mới xung quanh định dạng ISOBRL, giúp nó dễ tiếp cận hơn đối với cả người sáng tạo và người dùng. Định dạng này cũng có thể được mở rộng để bao gồm các tính năng mới hoặc hỗ trợ các loại thiết bị in xúc giác mới, đảm bảo rằng nó vẫn phù hợp khi công nghệ phát triển.

Việc ISO chuẩn hóa định dạng ISOBRL là một bước tiến đáng kể đối với khả năng truy cập của đồ họa xúc giác. Nó cung cấp một khuôn khổ chung mà người sáng tạo, nhà phân phối và người dùng có thể dựa vào, giúp đảm bảo rằng đồ họa xúc giác nhất quán và đáng tin cậy. Tiêu chuẩn ISO cũng thúc đẩy hợp tác quốc tế, vì nó khuyến khích chia sẻ các thông lệ tốt nhất và phát triển các tài nguyên được chia sẻ, chẳng hạn như các thư viện đồ họa xúc giác có thể được sử dụng bởi những người ở các quốc gia khác nhau.

Mặc dù có nhiều ưu điểm, định dạng ISOBRL không phải là không có thách thức. Một trong những thách thức chính là nhu cầu về phần mềm và phần cứng chuyên dụng để tạo và in các tệp ISOBRL. Đây có thể là rào cản đối với các cá nhân và tổ chức nhỏ có thể không có nguồn lực để đầu tư vào các thiết bị như vậy. Ngoài ra, có một đường cong học tập liên quan đến việc tạo đồ họa xúc giác hiệu quả, có thể là một thách thức đối với các nhà thiết kế mới làm quen với lĩnh vực khả năng truy cập.

Để giải quyết những thách thức này, đang có những nỗ lực liên tục để phát triển các công cụ giá cả phải chăng và thân thiện với người dùng hơn để tạo và in các tệp ISOBRL. Ngoài ra còn có các chương trình đào tạo và tài nguyên có sẵn để giúp các nhà thiết kế học các kỹ năng cần thiết để tạo đồ họa xúc giác có thể truy cập được. Khi nhận thức về tầm quan trọng của khả năng truy cập tiếp tục tăng lên, có khả năng định dạng ISOBRL sẽ được

Định dạng được hỗ trợ

AAI.aai

Hình ảnh Dune AAI

AI.ai

Adobe Illustrator CS2

AVIF.avif

Định dạng tệp hình ảnh AV1

BAYER.bayer

Hình ảnh Bayer thô

BMP.bmp

Hình ảnh bitmap Microsoft Windows

CIN.cin

Tệp hình ảnh Cineon

CLIP.clip

Mặt nạ cắt hình ảnh

CMYK.cmyk

Mẫu thô màu xanh lam, đỏ mạnh, vàng và đen

CUR.cur

Biểu tượng Microsoft

DCX.dcx

ZSoft IBM PC Paintbrush đa trang

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

Hình ảnh SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Định dạng tài liệu di động được đóng gói

EPI.epi

Định dạng trao đổi PostScript được đóng gói của Adobe

EPS.eps

PostScript được đóng gói của Adobe

EPSF.epsf

PostScript được đóng gói của Adobe

EPSI.epsi

Định dạng trao đổi PostScript được đóng gói của Adobe

EPT.ept

PostScript được đóng gói với xem trước TIFF

EPT2.ept2

PostScript Level II được đóng gói với xem trước TIFF

EXR.exr

Hình ảnh phạm vi động cao (HDR)

FF.ff

Farbfeld

FITS.fits

Hệ thống vận chuyển hình ảnh linh hoạt

GIF.gif

Định dạng trao đổi đồ họa CompuServe

HDR.hdr

Hình ảnh phạm vi động cao

HEIC.heic

Container hình ảnh hiệu quả cao

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Biểu tượng Microsoft

ICON.icon

Biểu tượng Microsoft

J2C.j2c

Dòng mã JPEG-2000

J2K.j2k

Dòng mã JPEG-2000

JNG.jng

Đồ họa mạng JPEG

JP2.jp2

Cú pháp định dạng tệp JPEG-2000

JPE.jpe

Định dạng JFIF của Nhóm chuyên gia hình ảnh liên hợp

JPEG.jpeg

Định dạng JFIF của Nhóm chuyên gia hình ảnh liên hợp

JPG.jpg

Định dạng JFIF của Nhóm chuyên gia hình ảnh liên hợp

JPM.jpm

Cú pháp định dạng tệp JPEG-2000

JPS.jps

Định dạng JPS của Nhóm chuyên gia hình ảnh liên hợp

JPT.jpt

Cú pháp định dạng tệp JPEG-2000

JXL.jxl

Hình ảnh JPEG XL

MAP.map

Cơ sở dữ liệu hình ảnh liền mạch đa phân giải (MrSID)

MAT.mat

Định dạng hình ảnh MATLAB level 5

PAL.pal

Pixmap Palm

PALM.palm

Pixmap Palm

PAM.pam

Định dạng bitmap 2 chiều phổ biến

PBM.pbm

Định dạng bitmap di động (đen và trắng)

PCD.pcd

CD Ảnh

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Định dạng ImageViewer cơ sở dữ liệu Palm

PDF.pdf

Định dạng tài liệu di động

PDFA.pdfa

Định dạng lưu trữ tài liệu di động

PFM.pfm

Định dạng float di động

PGM.pgm

Định dạng graymap di động (xám)

PGX.pgx

Định dạng không nén JPEG 2000

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Định dạng JFIF của Nhóm chuyên gia nhiếp ảnh liên hiệp

PNG.png

Đồ họa mạng di động

PNG00.png00

PNG kế thừa độ sâu bit, loại màu từ hình ảnh gốc

PNG24.png24

RGB 24 bit trong suốt hoặc nhị phân (zlib 1.2.11)

PNG32.png32

RGBA 32 bit trong suốt hoặc nhị phân

PNG48.png48

RGB 48 bit trong suốt hoặc nhị phân

PNG64.png64

RGBA 64 bit trong suốt hoặc nhị phân

PNG8.png8

8-bit chỉ mục trong suốt hoặc nhị phân

PNM.pnm

Anymap di động

PPM.ppm

Định dạng pixmap di động (màu)

PS.ps

Tệp Adobe PostScript

PSB.psb

Định dạng tài liệu lớn Adobe

PSD.psd

Bitmap Adobe Photoshop

RGB.rgb

Mẫu thô đỏ, xanh lá cây, và xanh dương

RGBA.rgba

Mẫu thô đỏ, xanh lá cây, xanh dương, và alpha

RGBO.rgbo

Mẫu thô đỏ, xanh lá cây, xanh dương, và độ mờ

SIX.six

Định dạng đồ họa DEC SIXEL

SUN.sun

Rasterfile Sun

SVG.svg

Đồ họa Vector có thể mở rộng

TIFF.tiff

Định dạng tệp hình ảnh được gắn thẻ

VDA.vda

Hình ảnh Truevision Targa

VIPS.vips

Hình ảnh VIPS

WBMP.wbmp

Hình ảnh Bitmap không dây (cấp độ 0)

WEBP.webp

Định dạng hình ảnh WebP

YUV.yuv

CCIR 601 4:1:1 hoặc 4:2:2

Câu hỏi thường gặp

Cái này hoạt động như thế nào?

Bộ chuyển đổi này chạy hoàn toàn trong trình duyệt của bạn. Khi bạn chọn một tệp, nó sẽ được đọc vào bộ nhớ và chuyển đổi sang định dạng đã chọn. Sau đó, bạn có thể tải xuống tệp đã chuyển đổi.

Mất bao lâu để chuyển đổi một tệp?

Việc chuyển đổi bắt đầu ngay lập tức và hầu hết các tệp được chuyển đổi trong vòng chưa đầy một giây. Các tệp lớn hơn có thể mất nhiều thời gian hơn.

Điều gì xảy ra với các tệp của tôi?

Các tệp của bạn không bao giờ được tải lên máy chủ của chúng tôi. Chúng được chuyển đổi trong trình duyệt của bạn và sau đó tệp đã chuyển đổi sẽ được tải xuống. Chúng tôi không bao giờ thấy các tệp của bạn.

Tôi có thể chuyển đổi những loại tệp nào?

Chúng tôi hỗ trợ chuyển đổi giữa tất cả các định dạng hình ảnh, bao gồm JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, v.v.

Cái này giá bao nhiêu?

Bộ chuyển đổi này hoàn toàn miễn phí và sẽ luôn miễn phí. Bởi vì nó chạy trong trình duyệt của bạn, chúng tôi không phải trả tiền cho máy chủ, vì vậy chúng tôi không cần tính phí bạn.

Tôi có thể chuyển đổi nhiều tệp cùng một lúc không?

Đúng! Bạn có thể chuyển đổi bao nhiêu tệp tùy thích cùng một lúc. Chỉ cần chọn nhiều tệp khi bạn thêm chúng.