OCR หรือ Optical Character Recognition เป็นเทคโนโลยีที่ใช้แปลงชนิดต่าง ๆ ของเอกสาร อาทิ เอกสารที่สแกน ไฟล์ PDF หรือภาพที่ถ่ายด้วยกล้องดิจิตอล เป็นข้อมูลที่สามารถแก้ไขและค้นหาได้
ในขั้นตอนแรกของ OCR ภาพของเอกสารข้อความจะถูกสแกน ซึ่งอาจจะเป็นภาพถ่ายหรือเอกสารที่สแกน จุดประสงค์ของขั้นตอนนี้คือการสร้างสำเนาดิจิตอลของเอกสาร แทนการถอดรหัสด้วยมือ เพิ่มเติม กระบวนการดิจิไทซ์นี้ยังสามารถช่วยเพิ่มอายุยาวนานของวัสดุเนื่อ งจากลดการจับจัดทรัพยากรที่เปราะบาง
เมื่อเอกสารถูกดิจิตอลไปแล้ว ซอฟต์แวร์ OCR จะแยกภาพออกเป็นตัวอักษรแต่ละตัวเพื่อจัดรูป นี้เรียกว่ากระบวนการแบ่งส่วน การแบ่งส่วนจะแยกเอกสารออกเป็นบรรทัด คำ แล้วค่อยแยกเป็นตัวอักษร การแบ่งแยกนี้เป็นกระบวนการที่ซับซ้อนเนื่องจากมีปัจจัยมากมายที่เข้ามาเกี่ยวข้อง -- แบบอักษรที่แตกต่างกัน ขนาดข้อความที่แตกต่างกัน และการจัดเรียงข้อความที่ไม่เหมือนใคร เพียงแค่นี้ยังมีอีก
หลังจากการแบ่งส่วน อัลกอริทึม OCR จะใช้การรู้จำรูปแบบเพื่อระบุตัวอักษรแต่ละตัว สำหรับแต่ละตัวอักษร อัลกอริทึมจะเปรียบเทียบกับฐานข้อมูลของรูปร่างตัวอักษร การจับคู่ที่ใกล้ที่สุดจะถูกเลือกเป็นตัวตนของตัวอักษร ในการรู้จำคุณสมบัติ ซึ่งเป็นรูปแบบอย่างหนึ่งของ OCR ที่ขั้นสูง อัลกอริทึมไม่เพียงแค่ศึกษารูปร่าง แต่ยังสนใจเส้นและเส้นโค้งในรูปแบบด้วย
OCR มีการประยุกต์ใช้ที่มีประโยชน์หลายอย่าง -- จากการดิจิทัลไซส์เอกสารที่พิมพ์ การเปิดใช้บริการอ่านข้อความอัตโนมัติ การปรับเปลี่ยนกระบวนการรับข้อมูลอัตโนมัติ ไปจนถึงการช่วยผู้ใช้ที่มีความบกพร่องทางการมองเห็นในการมีปฏิสัมพันธ์กับข้อความอย่างมากยิ่งขึ้น แต่ก็ควรทราบว่ากระบวนการ OCR ไม่ได้เป็นที่ถาวรและอาจทำความผิดพลาดได้โดยเฉพาะอย่างยิ่งเมื่อมีการจัดการเอกสารความละเอียดต่ำ แบบอักษรซับซ้อน หรือข้อความที่พิมพ์ไม่ดี ดังนั้น ความแม่นยำของระบบ OCR มีความแตกต่างกันอย่างมากขึ้นอยู่กับคุณภาพของเอกสารต้นฉบับและซอฟต์แวร์ OCR ที่ใช้เฉพาะสำคัญ
OCR เป็นเทคโนโลยีสำคัญในการฝึกฝนและการดิจิตอลในปัจจุบัน มันช่วยประหยัดเวลาและทรัพยากรอย่างมากโดยลดต้องการการป้อนข้อมูลด้วยมือและให้ทางเลือกที่น่าเชื่อถือ มีประสิทธิภาพในการแปลงเอกสารทางกายภาพเป็นรูปแบบดิจิตอล.
Optical Character Recognition (OCR) เป็นเทคโนโลยีที่ใช้ในการแปลงประเภทต่าง ๆ ของเอกสาร เช่น ผลงานที่สแกนด้วยกระดาษ PDF ไฟล์หรือภาพที่ถ่ายด้วยกล้องดิจิตอล ให้เป็นข้อมูลที่สามารถแก้ไขและค้นหาได้
OCR ทำงานโดยการสแกนภาพนำเข้าต่างๆหรือเอกสาร การแบ่งภาพออกเป็นตัวอักษรแต่ละตัว แล้วเปรียบเทียบแต่ละตัวอักษรกับฐานข้อมูลแบบรูปของตัวอักษรโดยใช้การจดจำรูปแบบหรือจดจำลักษณะ
OCR ถูกนำไปใช้ในหลายภาคและการประยุกต์ใช้ เช่น การเปลี่ยนเอกสา รที่พิมพ์ออกมาเป็นดิจิตอล การเปิดให้บริการอักษรเป็นเสียง การทำให้กระบวนการกรอกข้อมูลเป็นอัตโนมัติ และสนับสนุนผู้ที่มีความบกพร่องทางการมองเห็นให้สามารถสัมผัสปฏิสัมพันธ์กับข้อความได้ตรงตามความต้องการ
อย่างไรก็ตาม ทั้งที่เทคโนโลยี OCR ได้พัฒนามาอย่างมาก แต่ยังไม่มีความสมบูรณ์ การมีความแม่นยำมักจะขึ้นอยู่กับคุณภาพของเอกสารเดิมและรายละเอียดของซอฟต์แวร์ OCR ที่ใช้
ถึงแม้ว่า OCR ถูกออกแบบมาสำหรับข้อความที่พิมพ์ แต่ระบบ OCR ที่ระดับสูงบางระบบสามารถจดจำลายมือที่ชัดเจน สอดคล้องได้ อย่างไรก็ดี ทั่วไปแล้วการจดจำลายมือมีความแม่นยำน้อยกว่า เนื่องจากมีการผันแปรของรูปแบบการเขียนของแต่ละคน
ใช่ ซอฟต์แวร์ OCR หลายระบบสามารถจดจำภาษาหลายภาษา อย่างไรก็ตาม สำคัญที่จะต้องดูว่าภาษาที่ต้องการได้รับการสนับสนุนโดยซอฟต์แวร์ที่คุณใช้
OCR ย่อมาจาก Optical Character Recognition และใช้ในการจดจำข้อความที่พิมพ์ขณะที่ ICR หรือ Intelligent Character Recognition ที่ทันสมัยยิ่งขึ้นและใช้สำหรับการจดจำข้อความที่เขียนด้วยมือ
OCR ทำงานได้ดีที่สุดกับแบบอักษรที่ชัดเจน, สามารถอ่านได้ง่ายและมีขนาดข้อความมาตรฐาน ในขณะที่มันสามารถทำงานได้กับแบบอักษรและขนาดที่หลากหลาย แต่ความถูกต้องมักจะลดลงเมื่อจัดการกับแบบอักษรที่ไม่ปกติหรือขนาดข้อความที่เล็กมาก
OCR อาจพบปัญหากับเอกสารที่มีความละเอียดต่ำ, แบบอักษรซับซ้อน, ข้อความที่พิมพ์ไม่ดี, ลายมือ และเอกสารที่มีพื้นหลังที่แทรกซ้อนกับข้อความ นอกจากนี้ อย่างไรก็ตาม อาจใช้งานกับภาษาหลายภาษาได้ มันอาจไม่ครอบคลุมทุกภาษาอย่างสมบูรณ์
ใช่ OCR สามารถสแกนข้อความที่มีสีและพื้นหลังที่มีสี แม้ว่าจะมีประสิทธิภาพมากขึ้นด้วยสีที่มีความเปรียบเทียบความตัดกัน เช่น ข้อความดำบนพื้นหลังสีขาว ความถูกต้องอาจลดลงเมื่อสีข้อความและสีพื้นหลังไม่มีความคมชัดเพียงพอ
รูปแบบ Flexible Image Transport System (FITS) เป็นมาต รฐานแบบเปิดที่กำหนดรูปแบบไฟล์ดิจิทัลที่เป็นประโยชน์สำหรับการจัดเก็บ การส่ง และการประมวลผลของภาพทางวิทยาศาสตร์และภาพอื่นๆ FITS เป็นรูปแบบไฟล์ดิจิทัลที่ใช้กันมากที่สุดในดาราศาสตร์ ซึ่งแตกต่างจากรูปแบบภาพจำนวนมากที่ออกแบบมาสำหรับประเภทของภาพหรืออุปกรณ์เฉพาะ FITS จึงออกแบบมาให้มีความยืดหยุ่น ช่วยให้สามารถจัดเก็บข้อมูลทางวิทยาศาสตร์ได้หลายประเภท รวมถึงภาพ สเปกตรัม และตารางในไฟล์เดียว ความหลากหลายนี้ทำให้ FITS ไม่เพียงแต่เป็นรูปแบบภาพเท่านั้น แต่ยังเป็นเครื่องมือจัดเก็บข้อมูลทางวิทยาศาสตร์ที่แข็งแกร่งอีกด้วย
เดิมทีพัฒนาขึ้นในช่วงปลายทศวรรษ 1970 โดยนักดาราศาสตร์และนักวิทยาศาสตร์คอมพิวเตอร์ที่ต้องการรูปแบบข้อมูลมาตรฐานสำหรับการแลกเปลี่ยนและจัดเก็บข้อมูล FITS จึงออกแบบมาให้สามารถจัดทำเอกสารเองได้ ไม่ขึ้นกับเครื่อง และสามารถขยายได้ง่ายเพื่อรองรับความต้องการในอนาคต หลักการพื้นฐานเหล่านี้ทำให้ FITS สามารถปรับตัวได้ตลอดหลายทศวรรษของความก้าวหน้าทางเทคโนโลยีในขณะที่ยังคงเข้ากันได้กับรุ่นก่อนๆ เพื่อให้แน่ใจว่าข้อมูลที่จัดเก็บในรูปแบบ FITS เมื่อหลายสิบปีก่อนยังคงสามารถเข้าถึงและเข้าใจได้ในปัจจุบัน
ไฟล์ FITS ประกอบด้วย 'หน่วยข้อมูลส่วนหัว' (HDU) หนึ่งหน่วยขึ้นไป โดยแต่ละ HDU ประกอบด้วยส่วนหัวและส่วนข้อมูล ส่วนหัวประกอบด้วยชุดบรรทัดข้อความ ASCII ที่อ่านได้โดยมนุษย์ ซึ่งแต่ละบรรทัดจะอธิบายลักษณะของข้อมูลในส่วนถัดไป เช่น รูปแบบ ขนาด และข้อมูลบริบทอื่นๆ คุณสมบัติการจัดทำเอกสารด้วยตนเองนี้เป็นข้อได้เปรียบที่สำคัญของรูปแบบ FITS เนื่องจากฝังบริบทของข้อมูลโดยตรงพร้อมกับข้อมูลนั้นเอง ทำให้ไฟล์ FITS เข้าใจและใช้งานได้ง่ายขึ้น
ส่วนข ้อมูลของ HDU สามารถมีประเภทข้อมูลที่หลากหลาย รวมถึงอาร์เรย์ (เช่น ภาพ) ตาราง และโครงสร้างที่ซับซ้อนยิ่งขึ้น FITS รองรับประเภทข้อมูลหลายประเภท เช่น จำนวนเต็มและจำนวนจุดลอยตัว โดยมีความแม่นยำในระดับต่างๆ ซึ่งช่วยให้สามารถจัดเก็บข้อมูลการสังเกตแบบดิบที่มีความลึกของบิตสูง ซึ่งมีความสำคัญต่อการวิเคราะห์ทางวิทยาศาสตร์และการรักษาความสมบูรณ์ของข้อมูลตลอดขั้นตอนการประมวลผลและการวิเคราะห์
หนึ่งในคุณสมบัติหลักของ FITS คือการรองรับอาร์เรย์หลายมิติ ในขณะที่อาร์เรย์สองมิติ (2D) มักใช้สำหรับข้อมูลภาพ FITS สามารถรองรับอาร์เรย์ของมิติใดก็ได้ ทำให้เหมาะสำหรับข้อมูลทางวิทยาศาสตร์ที่หลากหลายนอกเหนือจากภาพง่ายๆ ตัวอย่างเช่น ไฟล์ FITS สามมิติ (3D) อาจจัดเก็บชุดภาพ 2D ที่เกี่ยวข้องเป็นระนาบต่างๆ ในมิติที่สาม หรืออาจจัดเก็บข้อมูลปริมาตรโ ดยตรง
FITS ยังโดดเด่นในความสามารถในการจัดเก็บเมตาดาต้าอย่างกว้างขวาง ส่วนหัวของ HDU แต่ละส่วนสามารถมี 'คำหลัก' ซึ่งให้คำอธิบายโดยละเอียดของข้อมูล รวมถึงเวลาและวันที่ของการสังเกต ข้อกำหนดของเครื่องมือสังเกต ประวัติการประมวลผลข้อมูล และอื่นๆ อีกมากมาย ความสามารถของเมตาดาต้าที่กว้างขวางนี้ทำให้ไฟล์ FITS ไม่เพียงแต่เป็นภาชนะบรรจุข้อมูลเท่านั้น แต่ยังเป็นบันทึกที่ครอบคลุมของการสังเกตทางวิทยาศาสตร์และกระบวนการที่สร้างข้อมูลเหล่านั้น
มาตรฐาน FITS รวมถึงข้อตกลงและส่วนขยายเฉพาะสำหรับข้อมูลประเภทต่างๆ ตัวอย่างเช่น ส่วนขยาย 'ตารางไบนารี' ช่วยให้สามารถจัดเก็บข้อมูลตารางได้อย่างมีประสิทธิภาพภายในไฟล์ FITS รวมถึงแถวของประเภทข้อมูลที่ไม่เป็นเนื้อเดียวกัน ส่วนขยายที่สำคัญอีกส่วนหนึ่งคือ 'ระบบพิกัดโลก' (WCS) ซึ่งให้วิธีมาตรฐานในการกำหนดพิกัดเชิงพื้นที่ (และบางครั้งก็เป็นเวลา) ที่เกี่ยวข้องกับข้อมูลดาราศาสตร์ คำหลัก WCS ในส่วนหัว FITS ช่วยให้สามารถแมปพิกเซลภาพไปยังพิกัดบนท้องฟ้าได้อย่างแม่นยำ ซึ่งมีความสำคัญต่อการวิจัยทางดาราศาสตร์
เพื่อให้แน่ใจว่าสามารถทำงานร่วมกันได้และความสมบูรณ์ของข้อมูล มาตรฐาน FITS จึงอยู่ภายใต้คำจำกัดความอย่างเป็นทางการและได้รับการอัปเดตอย่างต่อเนื่องโดย FITS Working Group ซึ่งประกอบด้วยผู้เชี่ยวชาญระดับนานาชาติในด้านดาราศาสตร์ การคำนวณ และวิทยาศาสตร์ข้อมูล มาตรฐานนี้ดูแลโดยสหพันธ์ดาราศาสตร์สากล (IAU) เพื่อให้แน่ใจว่า FITS ยังคงเป็นมาตรฐานสากลสำหรับข้อมูลดาราศาสตร์
ในขณะที่ FITS ออกแบบมาให้สามารถจัดทำเอกสารเองได้และสามารถขยายได้ แต่ก็มีความซับซ้อนอยู่ไม่น้อย โครงสร้างที่ยืดหยุ่นของไฟล์ FITS หมายความว่าซอฟต์แ วร์ที่อ่านหรือเขียนข้อมูล FITS จะต้องสามารถจัดการกับรูปแบบและประเภทข้อมูลที่หลากหลายได้ นอกจากนี้ เมตาดาต้าที่เป็นไปได้จำนวนมากและข้อตกลงที่ซับซ้อนสำหรับการใช้งานอาจสร้างเส้นการเรียนรู้ที่สูงชันสำหรับผู้ที่เพิ่งเริ่มทำงานกับไฟล์ FITS
แม้จะมีความท้าทายเหล่านี้ แต่การนำรูปแบบ FITS มาใช้ในวงกว้างและการมีไลบรารีและเครื่องมือมากมายในภาษาการเขียนโปรแกรมต่างๆ ทำให้การทำงานกับข้อมูล FITS สามารถเข้าถึงได้สำหรับผู้คนจำนวนมาก ไลบรารีต่างๆ เช่น CFITSIO (ใน C) และ Astropy (ใน Python) ให้ฟังก์ชันการทำงานที่ครอบคลุมสำหรับการอ่าน การเขียน และการจัดการไฟล์ FITS ซึ่งช่วยอำนวยความสะดวกในการใช้รูปแบบนี้ในการคำนวณทางวิทยาศาสตร์และการวิจัย
การใช้ FITS อย่างแพร่หลายและไลบรารีและเครื่องมือที่มีอยู่มากมายได้ส่งเสริมให้เกิดชุมชนผู้ใช้และนักพัฒนาท ี่มีชีวิตชีวา ซึ่งมีส่วนทำให้เกิดการปรับปรุงและการอัปเดตมาตรฐาน FITS และซอฟต์แวร์ที่เกี่ยวข้องอย่างต่อเนื่อง การพัฒนาที่ขับเคลื่อนโดยชุมชนนี้ช่วยให้แน่ใจว่า FITS ยังคงมีความเกี่ยวข้องและสามารถตอบสนองความต้องการที่เปลี่ยนแปลงไปของการวิจัยทางวิทยาศาสตร์
หนึ่งในการใช้งานที่สร้างสรรค์มากขึ้นของรูปแบบ FITS ในช่วงไม่กี่ปีที่ผ่านมาอยู่ในด้านการคำนวณประสิทธิภาพสูง (HPC) และการวิเคราะห์ข้อมูลขนาดใหญ่ภายในดาราศาสตร์ เมื่อกล้องโทรทรรศน์และเซ็นเซอร์มีความสามารถมากขึ้น ปริมาณข้อมูลดาราศาสตร์ก็เพิ่มขึ้นอย่างมาก FITS ได้รับการปรับให้เข้ากับการเปลี่ยนแปลงเหล่านี้ โดยมีเครื่องมือและไลบรารีใหม่ๆ ที่พัฒนาขึ้นเพื่อจัดการกับปริมาณข้อมูลที่เพิ่มขึ้นอย่างมีประสิทธิภาพ ทำให้เป็นส่วนประกอบสำคัญในกระบวนการประมวลผลข้อมูลของ การสำรวจทางดาราศาสตร์ที่สำคัญ
ความสามารถของรูปแบบ FITS ในการจัดเก็บและจัดระเบียบข้อมูลหลายมิติที่ซับซ้อนพร้อมเมตาดาต้าที่กว้างขวางยังพบว่ามีการใช้งานนอกเหนือจากดาราศาสตร์อีกด้วย สาขาต่างๆ เช่น การถ่ายภาพทางการแพทย์ ภูมิศาสตร์ และแม้แต่การเก็บรักษาข้อมูลแบบดิจิทัลได้นำ FITS มาใช้สำหรับความต้องการในการจัดเก็บข้อมูลต่างๆ โดยได้รับประโยชน์จากความแข็งแกร่ง ความยืดหยุ่น และลักษณะการจัดทำเอกสารด้วยตนเอง การใช้งานที่หลากหลายนี้แสดงให้เห็นถึงความแข็งแกร่งของหลักการพื้นฐานของรูปแบบ
เมื่อมองไปข้างหน้า การพัฒนาอย่างต่อเนื่องของรูปแบบ FITS น่าจะได้รับอิทธิพลจากความต้องการของสาขาวิทยาศาสตร์ใหม่ๆ และการระเบิดของข้อมูลดิจิทัลที่กำลังดำเนินอยู่ การปรับปรุงในด้านต่างๆ เช่น การบีบอัดข้อมูล การรองรับโครงสร้างข้อมูลที่ซับซ้อนที่ดียิ่งขึ้น และความสามารถของเมตาดาต้าขั้นสูงยิ่งขึ้นอาจขยายประโยชน์ใช้สอยของ FITS ได้ต่อไป ลักษณะที่เปิดกว