OCR หรือ Optical Character Recognition เป็นเทคโนโลยีที่ใช้แปลงชนิดต่าง ๆ ของเอกสาร อาทิ เอกสารที่สแกน ไฟล์ PDF หรือภาพที่ถ่ายด้วยกล้องดิจิตอล เป็นข้อมูลที่สามารถแก้ไขและค้นหาได้
ในขั้นตอนแรกของ OCR ภาพของเอกสารข้อความจะถูกสแกน ซึ่งอาจจะเป็นภาพถ่ายหรือเอกสารที่สแกน จุดประสงค์ของขั้นตอนนี้คือการสร้างสำเนาดิจิตอลของเอกสาร แทนการถอดรหัสด้วยมือ เพิ่มเติม กระบวนการดิจิไทซ์นี้ยังสามารถช่วยเพิ่มอายุยาวนานของวัสดุเนื่อ งจากลดการจับจัดทรัพยากรที่เปราะบาง
เมื่อเอกสารถูกดิจิตอลไปแล้ว ซอฟต์แวร์ OCR จะแยกภาพออกเป็นตัวอักษรแต่ละตัวเพื่อจัดรูป นี้เรียกว่ากระบวนการแบ่งส่วน การแบ่งส่วนจะแยกเอกสารออกเป็นบรรทัด คำ แล้วค่อยแยกเป็นตัวอักษร การแบ่งแยกนี้เป็นกระบวนการที่ซับซ้อนเนื่องจากมีปัจจัยมากมายที่เข้ามาเกี่ยวข้อง -- แบบอักษรที่แตกต่างกัน ขนาดข้อความที่แตกต่างกัน และการจัดเรียงข้อความที่ไม่เหมือนใคร เพียงแค่นี้ยังมีอีก
หลังจากการแบ่งส่วน อัลกอริทึม OCR จะใช้การรู้จำรูปแบบเพื่อระบุตัวอักษรแต่ละตัว สำหรับแต่ละตัวอักษร อัลกอริทึมจะเปรียบเทียบกับฐานข้อมูลของรูปร่างตัวอักษร การจับคู่ที่ใกล้ที่สุดจะถูกเลือกเป็นตัวตนของตัวอักษร ในการรู้จำคุณสมบัติ ซึ่งเป็นรูปแบบอย่างหนึ่งของ OCR ที่ขั้นสูง อัลกอริทึมไม่เพียงแค่ศึกษารูปร่าง แต่ยังสนใจเส้นและเส้นโค้งในรูปแบบด้วย
OCR มีการประยุกต์ใช้ที่มีประโยชน์หลายอย่าง -- จากการดิจิทัลไซส์เอกสารที่พิมพ์ การเปิดใช้บริการอ่านข้อความอัตโนมัติ การปรับเปลี่ยนกระบวนการรับข้อมูลอัตโนมัติ ไปจนถึงการช่วยผู้ใช้ที่มีความบกพร่องทางการมองเห็นในการมีปฏิสัมพันธ์กับข้อความอย่างมากยิ่งขึ้น แต่ก็ควรทราบว่ากระบวนการ OCR ไม่ได้เป็นที่ถาวรและอาจทำความผิดพลาดได้โดยเฉพาะอย่างยิ่งเมื่อมีการจัดการเอกสารความละเอียดต่ำ แบบอักษรซับซ้อน หรือข้อความที่พิมพ์ไม่ดี ดังนั้น ความแม่นยำของระบบ OCR มีความแตกต่างกันอย่างมากขึ้นอยู่กับคุณภาพของเอกสารต้นฉบับและซอฟต์แวร์ OCR ที่ใช้เฉพาะสำคัญ
OCR เป็นเทคโนโลยีสำคัญในการฝึกฝนและการดิจิตอลในปัจจุบัน มันช่วยประหยัดเวลาและทรัพยากรอย่างมากโดยลดต้องการการป้อนข้อมูลด้วยมือและให้ทางเลือกที่น่าเชื่อถือ มีประสิทธิภาพในการแปลงเอกสารทางกายภาพเป็นรูปแบบดิจิตอล.
Optical Character Recognition (OCR) เป็นเทคโนโลยีที่ใช้ในการแปลงประเภทต่าง ๆ ของเอกสาร เช่น ผลงานที่สแกนด้วยกระดาษ PDF ไฟล์หรือภาพที่ถ่ายด้วยกล้องดิจิตอล ให้เป็นข้อมูลที่สามารถแก้ไขและค้นหาได้
OCR ทำงานโดยการสแกนภาพนำเข้าต่างๆหรือเอกสาร การแบ่งภาพออกเป็นตัวอักษรแต่ละตัว แล้วเปรียบเทียบแต่ละตัวอักษรกับฐานข้อมูลแบบรูปของตัวอักษรโดยใช้การจดจำรูปแบบหรือจดจำลักษณะ
OCR ถูกนำไปใช้ในหลายภาคและการประยุกต์ใช้ เช่น การเปลี่ยนเอกสา รที่พิมพ์ออกมาเป็นดิจิตอล การเปิดให้บริการอักษรเป็นเสียง การทำให้กระบวนการกรอกข้อมูลเป็นอัตโนมัติ และสนับสนุนผู้ที่มีความบกพร่องทางการมองเห็นให้สามารถสัมผัสปฏิสัมพันธ์กับข้อความได้ตรงตามความต้องการ
อย่างไรก็ตาม ทั้งที่เทคโนโลยี OCR ได้พัฒนามาอย่างมาก แต่ยังไม่มีความสมบูรณ์ การมีความแม่นยำมักจะขึ้นอยู่กับคุณภาพของเอกสารเดิมและรายละเอียดของซอฟต์แวร์ OCR ที่ใช้
ถึงแม้ว่า OCR ถูกออกแบบมาสำหรับข้อความที่พิมพ์ แต่ระบบ OCR ที่ระดับสูงบางระบบสามารถจดจำลายมือที่ชัดเจน สอดคล้องได้ อย่างไรก็ดี ทั่วไปแล้วการจดจำลายมือมีความแม่นยำน้อยกว่า เนื่องจากมีการผันแปรของรูปแบบการเขียนของแต่ละคน
ใช่ ซอฟต์แวร์ OCR หลายระบบสามารถจดจำภาษาหลายภาษา อย่างไรก็ตาม สำคัญที่จะต้องดูว่าภาษาที่ต้องการได้รับการสนับสนุนโดยซอฟต์แวร์ที่คุณใช้
OCR ย่อมาจาก Optical Character Recognition และใช้ในการจดจำข้อความที่พิมพ์ขณะที่ ICR หรือ Intelligent Character Recognition ที่ทันสมัยยิ่งขึ้นและใช้สำหรับการจดจำข้อความที่เขียนด้วยมือ
OCR ทำงานได้ดีที่สุดกับแบบอักษรที่ชัดเจน, สามารถอ่านได้ง่ายและมีขนาดข้อความมาตรฐาน ในขณะที่มันสามารถทำงานได้กับแบบอักษรและขนาดที่หลากหลาย แต่ความถูกต้องมักจะลดลงเมื่อจัดการกับแบบอักษรที่ไม่ปกติหรือขนาดข้อความที่เล็กมาก
OCR อาจพบปัญหากับเอกสารที่มีความละเอียดต่ำ, แบบอักษรซับซ้อน, ข้อความที่พิมพ์ไม่ดี, ลายมือ และเอกสารที่มีพื้นหลังที่แทรกซ้อนกับข้อความ นอกจากนี้ อย่างไรก็ตาม อาจใช้งานกับภาษาหลายภาษาได้ มันอาจไม่ครอบคลุมทุกภาษาอย่างสมบูรณ์
ใช่ OCR สามารถสแกนข้อความที่มีสีและพื้นหลังที่มีสี แม้ว่าจะมีประสิทธิภาพมากขึ้นด้วยสีที่มีความเปรียบเทียบความตัดกัน เช่น ข้อความดำบนพื้นหลังสีขาว ความถูกต้องอาจลดลงเมื่อสีข้อความและสีพื้นหลังไม่มีความคมชัดเพียงพอ
รูปแบบไฟล์ภาพที่มีแท็ก (TIFF) เป็นรูปแบบที่หลากหลายและยืดหยุ่นสำหรับการจัดเก็บข้อมูลภาพที่พัฒนาขึ้นในช่วงกลางทศวรรษ 1980 โดย Aldus Corporation ซึ่งปัจจุบันเป็นส่วนหนึ่งของ Adobe Systems TIFF ได้รับการออกแบบมาเพื่อเชื่อมช่องว่างระหว่างรูปแบบภาพที่เป็นกรรมสิทธิ์ โดยให้กรอบการทำงานที่ปรับเปลี่ยนได้และมีรายละเอียดสำหรับการจัดเก็บภาพ ซึ่งแตกต่างจากรูปแบบภาพที่ง่ายกว่า TIFF สามารถจัดเก็บภาพความละเอียดสูงหลายชั้นได้ ทำให้เป็นตัวเลือกที่ต้องการสำหรับผู้เชี่ยวชาญในสาขาต่างๆ เช่น การถ่ายภาพ การเผยแพร่ และภาพภูมิสาร
ที่แกนกลาง รูปแบบ TIFF เป็นเหมือนคอนเทนเนอร์ที่สามารถเก็บรหัสภาพประเภทต่างๆ ได้ รวมถึงแต่ไม่จำกัดเพียง JPEG, LZW, PackBits และข้อมูลดิบที่ไม่ได้บีบอัด ความยืดหยุ่นนี้เป็นคุณสมบัติหลัก เนื่องจากช่วยให้สามารถปรับแต่งภาพ TIFF ให้เหมาะสมกับความต้องการที่แตกต่างกันได้อย่างมา ก ไม่ว่าจะเป็นการรักษาคุณภาพของภาพสูงสุดหรือลดขนาดไฟล์เพื่อให้แชร์ได้ง่ายขึ้น
ลักษณะเด่นของ TIFF คือโครงสร้างที่ทำงานบนหลักการพื้นฐานของแท็ก ไฟล์ TIFF แต่ละไฟล์ประกอบด้วยไดเร็กทอรีหนึ่งรายการขึ้นไป ซึ่งโดยทั่วไปเรียกว่า IFD (ไดเร็กทอรีไฟล์ภาพ) ซึ่งมีเมตาเดตาของภาพ ข้อมูลภาพเอง และอาจมีไฟล์ย่อยอื่นๆ แต่ละ IFD ประกอบด้วยรายการคำจำกัดความที่กำหนดไว้ รายการแต่ละรายการคือแท็กที่ระบุแอตทริบิวต์ต่างๆ ของไฟล์ เช่น ขนาดภาพ ประเภทการบีบอัด และข้อมูลสี โครงสร้างแท็กนี้ช่วยให้ไฟล์ TIFF สามารถจัดการกับภาพและข้อมูลประเภทต่างๆ ได้หลากหลาย ทำให้มีความหลากหลายอย่างมาก
จุดแข็งอย่างหนึ่งของ TIFF คือการรองรับพื้นที่สีและโมเดลสีต่างๆ รวมถึง RGB, CMYK, LAB และอื่นๆ ซึ่งช่วยให้แสดงสีได้อย่างแม่นยำในแอปพลิเคชันระดับมืออาชีพและสร้างสรรค์มากม าย นอกจากนี้ TIFF ยังรองรับความลึกของสีหลายระดับ ตั้งแต่ 1 บิต (ขาวดำ) ถึง 32 บิต (และสูงกว่า) ภาพสีจริง การรองรับความลึกของสีนี้เมื่อรวมกับความสามารถในการจัดการช่องอัลฟา (สำหรับความโปร่งใส) ทำให้ TIFF เป็นรูปแบบที่เหมาะสำหรับการสร้างภาพคุณภาพสูง
TIFF ยังให้การรองรับเมตาเดตาที่แข็งแกร่ง ซึ่งอาจรวมถึงข้อมูลลิขสิทธิ์ แสตมป์เวลา ข้อมูล GPS และอื่นๆ อีกมากมาย ซึ่งอำนวยความสะดวกโดยการใช้มาตรฐาน IPTC (International Press Telecommunications Council), EXIF (Exchangeable Image File Format) และ XMP (Extensible Metadata Platform) ความสามารถของเมตาเดตาที่ครอบคลุมดังกล่าวมีค่าอย่างมากสำหรับการจัดทำแคตตาล็อก การค้นหา และการจัดการไลบรารีภาพขนาดใหญ่ โดยเฉพาะในสภาพแวดล้อมระดับมืออาชีพที่ข้อมูลโดยละเอียดเกี่ยวกับภาพแต่ละภาพมีความสำคัญ
อีกหนึ่งคุณสมบัติที่น่าสังเกตของ TIFF คือความสามารถในการจัดการภาพและหน้าหลายภา พภายในไฟล์เดียว ซึ่งเป็นคุณสมบัติที่เรียกว่าการรองรับหลายหน้า สิ่งนี้ทำให้ TIFF มีประโยชน์อย่างยิ่งสำหรับเอกสารที่สแกน เอกสารที่ส่งแฟกซ์ และแอปพลิเคชันสตอรี่บอร์ด ซึ่งการรวมภาพที่เกี่ยวข้องไว้ในไฟล์เดียวสามารถปรับปรุงเวิร์กโฟลว์และการจัดการไฟล์ได้อย่างมาก
แม้จะมีข้อดีมากมาย แต่ความซับซ้อนและความยืดหยุ่นของ TIFF อาจนำไปสู่ปัญหาความเข้ากันได้ ไฟล์ TIFF ไม่ได้ถูกสร้างขึ้นมาเท่ากัน และไม่ใช่ซอฟต์แวร์ทุกตัวที่จะจัดการกับ TIFF ทุกรูปแบบได้ สิ่งนี้ทำให้เกิดชุดย่อย เช่น TIFF/EP (Electronic Photography) ซึ่งมีจุดมุ่งหมายเพื่อทำให้รูปแบบเป็นมาตรฐานสำหรับภาพจากกล้องดิจิทัล และ TIFF/IT (Information Technology) ซึ่งมุ่งเป้าไปที่ความต้องการของอุตสาหกรรมการพิมพ์ ชุดย่อยเหล่านี้ทำงานเพื่อให้แน่ใจว่าไฟล์เป็นไปตามโปรไฟล์เฉพาะ ซึ่งช่วยเพิ่มการทำงานร่วมกันได้บน แพลตฟอร์มและแอปพลิเคชันต่างๆ
การบีบอัดเป็นอีกแง่มุมที่สำคัญของ TIFF เนื่องจากรูปแบบนี้รองรับทั้งรูปแบบการบีบอัดแบบไม่สูญเสียและแบบสูญเสีย การบีบอัดแบบไม่สูญเสีย เช่น LZW (Lempel-Ziv-Welch) และ Deflate (คล้ายกับ ZIP) เป็นที่ต้องการสำหรับแอปพลิเคชันที่การรักษาคุณภาพของภาพต้นฉบับเป็นสิ่งสำคัญ การบีบอัดแบบสูญเสีย เช่น JPEG อาจใช้เมื่อขนาดไฟล์เป็นสิ่งที่สำคัญกว่าความเที่ยงตรงที่สมบูรณ์แบบ ในขณะที่ความยืดหยุ่นในการบีบอัดของ TIFF เป็นจุดแข็ง แต่ก็ยังต้องให้ผู้ใช้เข้าใจถึงข้อแลกเปลี่ยนที่เกี่ยวข้องในการเลือกวิธีการบีบอัด
หนึ่งในแง่มุมทางเทคนิคของ TIFF คือส่วนหัวของไฟล์ ซึ่งมีข้อมูลสำคัญเกี่ยวกับไฟล์ รวมถึงลำดับไบต์ที่ใช้ภายในไฟล์ TIFF รองรับลำดับไบต์แบบบิ๊กเอนเดียน (Motorola) และแบบลิตเทิลเอนเดียน (Intel) และไบต์แรกๆ ของส่วนหัวจะระบุว่าใช้ลำดับ ไบต์ใด ซึ่งช่วยให้สามารถอ่านไฟล์ TIFF ได้อย่างถูกต้องบนระบบและสถาปัตยกรรมที่แตกต่างกัน นอกจากนี้ ส่วนหัวยังระบุออฟเซ็ตไปยัง IFD แรก ซึ่งโดยพื้นฐานแล้วจะชี้ไปยังตำแหน่งที่ข้อมูลภาพและเมตาเดตาเริ่มต้น ซึ่งเป็นแง่มุมที่สำคัญสำหรับการอ่านไฟล์
การจัดการภาพที่มีช่วงไดนามิกสูง (HDR) เป็นอีกหนึ่งด้านที่ TIFF โดดเด่น ผ่านการใช้ค่าจุดลอยตัวสำหรับข้อมูลพิกเซล ไฟล์ TIFF สามารถแสดงช่วงความสว่างและค่าสีที่กว้างกว่ารูปแบบภาพมาตรฐาน ซึ่งรองรับความต้องการของอุตสาหกรรมต่างๆ เช่น เอฟเฟกต์พิเศษ ภาพยนตร์ดิจิทัล และการถ่ายภาพระดับมืออาชีพ ซึ่งต้องการการจับภาพและการสร้างภาพคุณภาพสูงดังกล่าว
แม้จะมีความหลากหลายและการใช้งานอย่างแพร่หลายในสาขาต่างๆ ระดับมืออาชีพ แต่รูปแบบ TIFF ก็ยังมีข้อวิพากวิจารณ์ ความยืดหยุ่นที่ทำให้ TIFF มีประสิทธ ิภาพมากยังส่งผลให้เกิดความซับซ้อน ทำให้ยากต่อการทำงานหากไม่มีซอฟต์แวร์เฉพาะทางหรือความเข้าใจอย่างถ่องแท้เกี่ยวกับความซับซ้อนของรูปแบบ นอกจากนี้ ขนาดไฟล์ของภาพ TIFF อาจมีขนาดใหญ่ได้มาก โดยเฉพาะอย่างยิ่งเมื่อจัดการกับข้อมูลภาพที่ไม่ได้บีบอัดหรือภาพความละเอียดสูง ซึ่งนำไปสู่ความท้าทายในการจัดเก็บและการส่ง
ในช่วงหลายปีที่ผ่านมา มีความพยายามที่จะเพิ่มความสามารถของ TIFF ให้ดียิ่งขึ้นในขณะที่แก้ไขข้อจำกัด ตัวอย่างเช่น BigTIFF เป็นส่วนขยายของข้อกำหนด TIFF เดิมที่อนุญาตให้ไฟล์มีขนาดใหญ่กว่า 4 GB ซึ่งตอบสนองความต้องการในการทำงานกับภาพความละเอียดสูงหรือภาพที่มีรายละเอียดมากซึ่งเกินขีดจำกัดของไฟล์ TIFF มาตรฐาน วิวัฒนาการนี้สะท้อนถึงการพัฒนาและการปรับตัวอย่างต่อเนื่องของ TIFF เพื่อตอบสนองความต้องการของเทคโนโลยีที่ก้าวหน ้าและแอปพลิเคชันใหม่ๆ
โดยสรุป รูปแบบไฟล์ภาพที่มีแท็ก (TIFF) เป็นเครื่องพิสูจน์ถึงความต้องการและความท้าทายที่เปลี่ยนแปลงไปของการจัดเก็บภาพดิจิทัล โดยผสมผสานความยืดหยุ่นเข้ากับความซับซ้อน ความสามารถในการเก็บข้อมูลภาพและเมตาเดตาโดยละเอียด รองรับรูปแบบการบีบอัดที่หลากหลาย และปรับให้เข้ากับการตั้งค่าระดับมืออาชีพต่างๆ ทำให้เป็นรูปแบบที่คงอยู่ อย่างไรก็ตาม การนำทางความซับซ้อนของรูปแบบนี้ต้องอาศัยความเข้าใจอย่างถ่องแท้เกี่ยวกับโครงสร้างและความสามารถของรูปแบบ เมื่อเทคโนโลยีการถ่ายภาพดิจิทัลยังคงก้าวหน้าต่อไป รูปแบบ TIFF ก็มีแนวโน้มที่จะพัฒนาต่อไป โดยยังคงความเกี่ยวข้องและประโยชน์ใช้สอยในโดเมนระดับมืออาชีพและสร้างสรรค์